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EXECUTIVE SUMMARY 

The purpose of this deliverable, entitled “Characterization of the dynamic risk of the disease onset based on 

survival analysis and dynamic Bayesian networks”, is to provide the consortium with models of disease onset for 

adult asthma and diabetes. 

The major advantage of using Survival Analysis is that it allows accounting for censored observations as well as 

time to event. This allowed us to use the whole set of available subjects, and to obtain as output more complete 

information, i.e. the curve of patient risk across years.  

Since the data available to the Pulse project contain many dynamic variables, we have also developed new 

predictive models based on dynamic Bayesian networks. Differently from Survival Analysis models, which can 

be viewed as deterministic, dynamic Bayesian networks allow modelling the stochastic evolution of variables 

showing how variables regulate each other over time in terms of probabilistic distribution of each variable at 

each time point. Once defined, the dynamic Bayesian network model can be exploited to perform simulated 

trials. It is also possible to evaluate the impact of the single biomarkers for the probability of disease onset and, 

eventually, efficacy in prevention treatment. It is also possible to identify clusters of patients with similar clinical 

histories and re-assess their risk profiles accordingly. Once a patient is assigned to a risk group, a predictive 

model, based on subject specific features, is used to derive the patient-specific probability of the event of 

interest. 
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1 INTRODUCTION 

The main objective of this work is to adopt different methodological approaches to predict the risk of Type 2 

Diabetes(T2D) and Asthma onset on adult population, based on different regression, classification and data 

mining algorithms and on more traditional risk scores such as FINDRISC (Lindström and Tuomilehto, 2003). 

Stemming from the PULSE data assembly activities, we run our analysis on MESA dataset (see deliverable D5.1, 

Section 3.1.2) that could be useful for the aforementioned objective given that it includes many different 

variables either directly measured or measured as a proxy (e.g., the energy expenditure due to physical activity, 

which is derived by a questionnaire in MESA, can be calculated from Fitbit data in PULSE) in PULSE.  

The purpose here is many-fold:  

· To develop a consensus of existing predicting models when available (as in case of T2D, whereas models 

of asthma onset are not available in the literature for adult population). This strategy was designed to 

better generalize on previously unseen data and cope with different nature and availability of variables 

collected in PULSE and in real-life scenarios. 

· To develop new models of disease onset including environmental variables in the models and assessing 

the ability of different variables to improve predictions. Support Vector Machines (SVMs) with linear 

and radial kernel and Cox logistic regression coupled with the LASSO (Least Absolute Shrinkage and 

Selection Operator) were trained on data suitably split in training and validation set. The training set 

was used to learn the classifier and to rank the variables by using an embedded recursive feature 

elimination schema coupled with bootstrap. The validation set was used to independently assess 

method performance.  

· To develop a Dynamic Bayesian Network model of disease onset, including the possibility of detecting 

probabilistic relationships among clinical, behavioural and environmental. Furthermore, the DBN was 

used to simulate the temporal evolution of variables in time and to stratify subjects by risk factors. The 

simulation of time-to-onset of the different subgroups was also implemented. 

 

The three following sections address the 3 above mentioned goals and corresponding modelling techniques. 
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2 DIABETES CONSENSUS MODEL AND RANKING OF PATIENTS BASED 

ON THEIR RISK SCORES 

Several predictive models of T2D onset were proposed in the literature to identify subjects at risk of developing 

T2D. Although T2D predictive models usually perform very well in the populations in which they were developed, 

they often present suboptimal performance when applied to new populations, mainly because of differences in 

the variables’ definition and different population characteristics. In this case, predictive models need to be 

recalibrated, i.e., their parameters need to be updated to describe the new population.  

In our previous deliverable, D5.3, we implemented eight literature models for prediction of T2D onset and 

assessed them on the MESA population both in their original version and after recalibrating them by re-

estimating all the model parameters on the MESA dataset. By comparing the original vs. the recalibrated models, 

we could observe that recalibration significantly improved the model accuracy in predicting the T2D onset 

probability (model calibration), but did not significantly improve the model ability to rank subjects according to 

T2D risk (model discriminatory ability). This means that, the models can correctly estimate the relative T2D risk 

of a subject compared to the population risk without any recalibration. However, the models require a 

recalibration to estimate correctly the probability of a subject to develop T2D within a certain time.  

Model recalibration can be performed by several strategies. In deliverable D5.3, we adopted a “full recalibration” 

strategy in which all the model parameters are re-estimated in the new population. This strategy is expected to 

maximise the model performance in the new population because all the model parameters are updated. 

However, in order to perform a full recalibration, a rich dataset must be available, which must contain 

measurement of all the model predictors at a baseline time and longitudinal information on T2D for several 

years after the baseline (e.g. 8-10 years). The problem is that, in practice, such rich information on the target 

population often is not available, or it is available only for a limited number of subjects, not enough for a robust 

estimation of the model parameters. For this reason, other simpler recalibration strategies, that we call “partial 

recalibration”, were proposed in which only 1-2 parameters of the model (typically the intercept and/or the 

scale parameters) are updated according to diabetes incidence in the target population [1][2]. These strategies 

exploit only information on T2D incidence in the target population.     

Besides the problem of recalibration, another issue of applying literature models to new populations is that the 

model output often cannot be calculated for certain subjects (missing model prediction) because some of the 

model input variables are missing or not defined for certain groups of subjects, e.g., different racial/age groups. 

For example, among the literature models that we assessed in deliverable D5.3, the ARIC models [3] and the 

model by Kahn et al. [4] could not be applied to Chinese and Hispanic subjects because they were originally 

developed in a population in which only Caucasian and Black races were represented and, thus, in these models 

variable race can only take two values “White/Caucasian” or “Black”. Similarly, the model by Stern et al. [5] 

cannot be applied to Chinese and Black subjects, because in the development cohort of this model only White 

and Hispanic subjects were represented.  

In order to overcome the problem of missing model predictions, we devised a diabetes consensus model that 

combines multiple existing models of T2D onset risk and manages the issues related to lack of calibration by 

implementing a suitable recalibration technique. We also propose a diabetes consensus ranker that returns a 

global ranking of subjects by combining multiple existing models of T2D onset risk. 

2.1 DEFINITION OF DIABETES CONSENSUS MODEL 

The diabetes consensus model returns a global score calculated as the weighted average of the risk scores of 

multiple models recalibrated on a target population. More formally, imagine we want to assess the risk of T2D 

onset in a population of N subjects, described by the covariate vectors !"  i=1,…,N, and there are M different 

models to perform this task, which return the risk scores #$(!") j=1,…,M for subjects i=1,…,N. Imagine also that 

each model has been recalibrated on the target population (either by full or partial recalibration) and let us 

define #$
%(!") the score of the jth recalibrated model for the ith subject. Then, the global score returned by the 

consensus model is:  
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#&(!") =
' *$ +
,
$-. /$01 + #$

%(Xi)

' *$,
$-. + /$01

 (1) 

where *$  is the weight for the jth model and /$01 is an indicator function that is equal to 1 if the jth recalibrated 

model can be applied to subject ith and 0 otherwise (missing model prediction). The weights *$  j=1,..,M should 

reflect the model performance, in order to assign larger weights to the models with better performance. 

2.2 DEFINITION OF DIABETES CONSENSUS RANKER 

The diabetes consensus ranker returns a global ranking of subjects for their T2D onset risk, which is obtained as 

the weighted average of the risk scores of multiple models, expressed as relative scores with respect to a 

reference dataset. The method is described more in details in the following. As in previous section, let us suppose 

we have N subjects described by the covariate vectors !"  i=1,…,N, and M models that return the risk scores 

#$(!") j=1,…,M for subjects i=1,…,N. Imagine also that the M models have already been applied to a reference 

dataset, with Nref subjects, and have produced M lists of ordered risk scores 2$ j=1,…,M. Now we define the 

relative risk score of the jth model for the ith subject, 3$(!"), as the percentage of values in 2$ that are lower of 

equal than #$(!"). Then, for each subject an average relative risk score is computed as: 

34(!") =
' *$ + /$01 + 3$(!")
,
$-.

' *$,
$-. + /$01

 (2) 

where, as in eq. (1), *$  is the weight for the jth model and /$01 is an indicator function that is equal to 1 if the jth 

model can be applied to subject ith and 0 otherwise (missing model prediction). Finally, a global ranking of the N 

subjects is obtained by ordering them according to their average relative risk score.  

2.3 IMPLEMENTATION AND ASSESSMENT ON MESA DATASET 

2.3.1 SELECTED DATA 

The diabetes consensus model and the diabetes consensus ranker were tested on the same data that we 

selected from MESA dataset in deliverable D5.3 to perform the recalibration of literature T2D models. In 

particular, from the total MESA sample, we selected the subjects who satisfied the following three conditions:  

· no diabetes (either treated or untreated) at exam 1  

· no history of cancer at exam 1 

· information on diabetes available at least at one of the follow-up exams  

The selected subsample included 5155 subjects of whom 640 subjects developed diabetes during the study. In 

particular, 184 subjects developed diabetes at exam 2, 106 at exam 3, 147 at exam 4 and 203 at exam 5. Note 

that we excluded the subjects having a history of cancer because cancer may have significantly compromised 

the health of these subjects. 

Then, the selected data were split into a training and a test set, including the 80% and 20% of selected subjects, 

respectively, stratified for incidence of diabetes. In particular, the training set contains 4124 subjects of whom 

512 subjects develop diabetes during the follow-up period, while the test set includes the remaining 1031 

subjects of whom 128 develop diabetes during the follow-up period. 

2.3.2 SELECTED MODELS 

The diabetes consensus model and the diabetes consensus ranker were tested considering the same models 

implemented and recalibrated in deliverable D5.3. In particular, we considered M=8 literature models of 

diabetes: the model by Stern et al. [5], FINDRISC [6], the three ARIC models (ARIC 1, ARIC 2 and ARIC 3) [3], 
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Framingham model [7], the basic risk score by Kahn et al. [4] and DPoRT [8]. These models can be grouped in 

three different scenarios based on the variables they require (Figure 1). In particular, scenario 1 includes DPoRT 

and FINDRISC that use only easily accessible information; scenario 2 includes ARIC 1 and the model by Kahn et 

al., which, in addition to easily accessible information, require some non-invasive measurements collected by 

medical instruments (e.g. heart rate and blood pressure); finally, scenario 3 includes the models that use 

biomarkers measured in blood test, i.e. the model by Stern et al., ARIC 2, ARIC 3 and Framingham.  

The assessment performed in deliverable D5.3 showed that models in scenario 3 have the best performance in 

terms of discriminatory ability, followed by the models in scenario 2 and finally the models in scenario 1. This is 

an expected result because, while in scenario 2 and 3 important risk factors as hypertension and high blood 

sugar are quantitatively assessed, in the models of scenario 1 such conditions are approximated by self-reported 

indicators. Nevertheless, models of scenario 1 generally have less missing predictions, because they rely only on 

easily accessible information. Conversely, models of scenarios 2 and 3 are more likely to have missing model 

predictions, as clinical measurements and biomarkers may not always be available. 

 

 

Figure 1. Summary of the selected models. Models of scenario 1, 2 and 3 are evidenced in yellow, green and 

blue respectively.  

 

2.3.3 IMPLEMENTATION AND ASSESSMENT 

The diabetes consensus model was assessed on the test set extracted from the MESA dataset (N=1031). 

Recalibration of the eight selected models was performed by the partial recalibration strategy adopted in work 

by Kangne et al. [9]. In particular, for logistic regression models, the recalibrated risk score was calculated as [2]:

#%(!") =
5!"67

8 9 5!"67
 (3) 

where φ is a correction factor based on observed incident diabetes rate at a certain follow-up, :;, and the 

respective incident diabetes rate predicted by the original model, :<: 

> =
log?(:;@(8 A :;))
:<@(8 A :<)

 (4) 

For survival models, the recalibrated incident risk score for follow-up time T was calculated as [1]: 

#%(!") = 8 A exp?(Aexp?(B 9 log?(A logC8 A #(!")D) (5) 

where #(!") is the risk of T2D onset predicted by the model for subject i at follow-up time T, while B is a 

correction coefficient calculated based on :; and :<: 
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B = log(A log(8 A :;)) A log?(Alog?(8 A :<)) (6) 

Specifically, in our implementation the recalibration was performed for a follow-up time of 8 years, to be 

consistent with the recalibration performed in deliverable D5.3. Thus, :; was calculated using the training set 

as the fraction of subjects in the training set that developed diabetes within 8 years after the baseline visit, while 

:< was calculated using test set data as the mean predicted diabetes risk of subjects in the test set. In order to 

assess the efficacy of the partial recalibration, the performance of the models with partial recalibration was 

compared to those of the original models and the models recalibrated with a full recalibration strategy (derived 

in deliverable D5.3).  

Once the scores of different models had been recalibrated, the diabetes consensus model’s global scores were 

calculated by eq. (1). The weights *$  j=1,…,M were defined as the scenario number, thus models in scenario 1 

had weight 1, models in scenarios 2 had weight 2 and models in scenario 3 had weight 3.  

Performance of the diabetes consensus model was assessed in terms of:  

· discriminatory ability, by calculating the concordance index (C-index) and the area under the ROC curve 

(AUC) at 8 years; 

· calibration, by calculating the expected to observed event ratio (E/O) at 8 years; 

· missing model predictions, by calculating the percentage of subject for whom the model cannot return 

a valid risk score (MMP).  

A description of metrics of discriminatory ability and calibration was provided in deliverable D5.3, Section 3. 

Confidence intervals for these metrics were constructed by a bootstrap validation in the training set. Specifically, 

100 sets of subjects were extracted from the training set by bootstrap resampling and the 8-year diabetes 

incidence rate for the kth set, :;0E, was calculated. Then, performance of the consensus model was assessed on 

each of the 100 out-of-bag samples, using the rate :;0E for the model recalibration in the respective kth out-of-

bag sample, for k=1,…,100. Finally, median and 95% confidence intervals were calculated for all the metrics on 

the 100 out-of-bag samples.  

The diabetes consensus ranker was assessed on the MESA dataset using a similar scheme to that adopted for 

the diabetes consensus model: the global ranking was assessed on the test set (N=1031), using the training set 

as reference set to calculate the relative risk scores (Nref=4124). As for the diabetes consensus model, different 

models in the average relative risk scores of eq. (2) were weighted according to the model scenario.  

The discriminatory ability of the diabetes consensus ranker was assessed on the test using the C-index and 8-

year AUC. Confidence intervals for these metrics were derived by performing a bootstrap validation with 100 

repetitions on the training set (as done for the diabetes consensus model), in which the ranker performance was 

assessed on the out-bag-samples considering the respective sample extracted by bootstrap sampling as 

reference set. 

Performance of the diabetes consensus model and the diabetes consensus ranker were compared to those of 

the eight recalibrated literature models considered for their construction. 

2.4 RESULTS OF THE ASSESSMENT 

The first part of our assessment focused on comparing the efficacy of different recalibration strategies, i.e. the 

partial recalibration and the full recalibration. In Table 1, the values of AUC and E/O at 8 years are compared for 

the eight literature models in their original version (columns “Original”) and their recalibrated versions obtained 

with partial recalibration (columns “Partial recal.”) and full recalibration (columns “Full recal.”). As already 

shown in deliverable D5.3, with a full recalibration the AUC slightly improves (e.g., for Stern and ARIC models) 

or remains unchanged (e.g., for FINDRISC and Kahn), while the E/O significantly improves compared to the 

original models for most of the models. With a partial recalibration, AUC does not change at all, because only 

the intercept parameter, which is the same for all the subjects, is updated with this strategy, and the E/O 

generally improves, although, as expected, this improvement is smaller than with the full recalibration. These 

results evidenced that:  
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· model discriminatory ability is good even without recalibration; 

· to solve the lack of calibration issue, the re-estimation of all model parameters (full recalibration) is 

preferable, provided that a sufficiently rich dataset is available for this purpose; 

· if the full recalibration cannot be performed, reasonably good calibration performance can still be 

obtained by a partial calibration approach.  

 

Table 1. Performance of original models, models with partial recalibration and fully-recalibrated models 

assessed on the test set. Reported metrics are AUC and E/O at 8 years. 

Model 
AUC at 8 years E/O at 8 years 

Original Partial recal. Full recal. Original Partial recal. Full recal. 

DPoRT men 0.724 0.724 0.735 6.349 1.764 0.956 

DPoRT women 0.744 0.744 0.756 3.474 0.534 1.044 

FINDRISC 0.735 0.735 0.738 0.521 0.697 0.980 

ARIC 1 0.789 0.789 0.825 2.134 0.839 0.861 

Kahn 0.803 0.803 0.798 3.909 0.852 0.930 

Stern 0.846 0.846 0.864 1.748 0.890 0.891 

ARIC 2 0.868 0.868 0.887 1.025 0.812 0.837 

ARIC 3 0.872 0.872 0.890 1.046 0.807 0.837 

Framingham 0.864 0.864 0.873 0.864 0.864 0.796 

 

The second part of our assessment focused on the testing of the diabetes consensus model and the diabetes 

consensus ranker. Performance metrics of the diabetes consensus model, the diabetes consensus ranker and 

the recalibrated literature models used for their derivation (with partial recalibration) are reported in Table 2 

for both the test set and the bootstrap validation.  

Results show that, in terms of discriminatory ability (C-index and AUC), the diabetes consensus model is able to 

achieve performance comparable to those of the models of scenario 3, and much better than those of scenarios 

1 and 2. The diabetes consensus model results also well calibrated in the MESA population, with E/O equal to 

0.82 on the test set and 0.83 [0.72-1.09] in the bootstrap validation. Interestingly, the diabetes consensus model 

outperforms the models of scenarios 2 and 3 in terms of missing model predictions. Indeed, while the diabetes 

consensus model presents no missing model predictions, the models of scenarios 2 and 3 have a significant 

percentage of missing model predictions, which, e.g. on the test set, ranges between 17% (Framingham) and 

46% (model by Kahn et al.).  

Similar considerations can be done in terms of discriminatory ability and missing model predictions when 

comparing the diabetes consensus ranker with the literature models. Note that we cannot assess E/O for the 

diabetes consensus ranker, because this is a ranking tool, which can only rank the subjects according to T2D 

onset risk, but it cannot estimate the probability of T2D onset and thus the expected number of events in 8 years 

needed to calculate E/O. Comparing the diabetes consensus model with the diabetes consensus ranker, 

performances in terms of discriminatory ability are similar (slightly lower for the ranker). 

In Figure 2, the ROC curve at 8 years on the test set is plotted for the diabetes consensus model (green), the 

diabetes consensus ranker (light blue) and ARIC 3 (red), which is the literature model with best discriminatory 

ability. The three curves are very similar, confirming that the three models have similar ranking performance. In 

Figure 3, the calibration plot at 8 years obtained for the diabetes consensus model and the ARIC 3 model on the 
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test set is shown. The plot shows that the two models are generally well calibrated, although they both 

underestimate the cases of T2D onset for high-risk subjects.  

 

Table 2. Performance of diabetes consensus model and the diabetes consensus ranker compared to the 

original models recalibrated with partial recalibration. Metrics for the bootstrap validation are reported as 

median [2.5 percentile – 97.5 percentile] of the values obtained in the 100 bootstrap repetitions. 

Model 

Test set Bootstrap validation 

C-index 
AUC at 8 

years 

E/O at 8 

years 

MMP 

[%] 
C-index 

AUC at 8 

years 

E/O at 8 

years 

MMP 

[%] 

Diabetes 

consensus 

model 

0.83 0.87 0.82 0% 
0.79 

[0.76-0.82] 

0.83 

[0.80-0.86] 

0.83 

[0.72-1.09] 

0% 

[0-0]% 

Diabetes 

consensus 

ranker 

0.82 0.86 - 0% 
0.78 

[0.76-0.81] 

0.82 

[0.79-0.85] 
- 

0% 

[0-0]% 

DPoRT  

men 
0.70 0.72 1.76 

1% 

0.67 

[0.62-0.71] 

0.68 

[0.63-0.74] 

1.80 

[1.47-2.40] 
1% 

[0-1]% 
DPoRT 

women 
0.70 0.74 0.53 

0.69 

[0.65-0.74] 

0.71 

[0.67-0.77] 

0.51 

[0.42-0.71] 

FINDRISC 0.70 0.74 0.70 0% 
0.67 

[0.64-0.71] 

0.70 

[0.66-0.74] 

0.70 

[0.59-0.94] 

0% 

[0-0]% 

ARIC 1 0.73 0.79 0.84 45% 
0.71 

[0.66-0.75] 

0.74 

[0.68-0.78] 

0.90 

[0.72-1.39] 

43% 

[41-45]% 

Kahn 0.75 0.80 0.85 46% 
0.73 

[0.68-0.77] 

0.74 

[0.68-0.78] 

0.90 

[0.72-1.42] 

46% 

[44-47]% 

Stern 0.81 0.85 0.89 42% 
0.81 

[0.76-0.84] 

0.85 

[0.81-0.88] 

1.02 

[0.86-1.38] 

41% 

[39-42]% 

ARIC 2 0.82 0.87 0.81 45% 
0.83 

[0.80-0.86] 

0.87 

[0.80-0.86] 

0.83 

[0.80-0.86] 

43% 

[42-45]% 
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Figure 2. ROC curve at 8 years for the diabetes consensus model (green), the diabetes consensus ranker (blue) 

and ARIC 3 (red).  

 

 

 

Figure 3. Calibration plot at 8 years for the diabetes consensus model (water green) and ARIC 3 (red).  


