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EXECUTIVE SUMMARY 
The purpose of this deliverable, entitled “Incorporation of new variables into the models”, is to report 
the results of task 5.3, i.e., the identification of new variables, known or suspected to be associated to 
the risk of developing type 2 diabetes (T2D) and asthma, which were not considered by state-of-the-art 
literature models. In addition, in this deliverable we report the activities of task 5.2 related to the 
implementation and recalibration of state-of-the-art predictive models on the data of the Multi-Ethnic 
Study of Atherosclerosis, which were not reported in D5.2, due to delays in the availability of the MESA 
dataset. Therefore, the previous deliverable D5.2 included only the recalibration of state-of-the-art 
models on the Health and Retirement Study (HRS) dataset. Note that only two T2D predictive models 
were implemented on the HRS data, because the variables required for the implementation of the other 
models were not collected in HRS.  
This deliverable is structured as follows. After a brief introduction (Section 1), in Section 2 we describe 
the MESA dataset, which was used for the activities reported in this deliverable. In the following Section 
3, Section 4 Section 5, we document the implementation and recalibration of state-of-the-art predictive 
models of diabetes onset and asthma adult-onset. Section 6 is dedicated to the identification of new 
potentially predictive variable of diabetes and asthma onset. The probabilistic relationships between the 
candidate predictive variables and the onset of diabetes and asthma were studied by using static 
Bayesian networks, as we describe in Section 7. Finally, in Section 8 we discuss the integration of the 
predictive models in the PULSE architecture.  
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1 INTRODUCTION 
In order to test the existing predictive models of T2D and asthma onset and develop new models, 
longitudinal datasets in which a group of healthy subjects is followed up over time for several years 
(e.g. more than 5 years) are required, because of the need to observe a sufficient number of new cases 
of T2D/asthma. Since PULSE cannot collect longitudinal data with such a long time horizon (due to the 
limited duration of this project), we looked for longitudinal datasets already available in the literature 
that could be suitable for the implementation and development of predictive models of T2D and asthma. 
Two datasets were selected for this purpose: the Health and Retirement Study (HRS) dataset and the 
Multi-Ethnic Study of Atherosclerosis (MESA) dataset. Since the HRS dataset includes information on 
diabetes onset, but not on asthma adult-onset, it was possible to implement only T2D onset predictive 
models on this dataset. In particular, the implementation and recalibration of state-of-the-art models on 
HRS dataset was reported in deliverable D5.2. Conversely, both T2D and asthma onset predictive 
models can be implemented on the MESA dataset, as information on both T2D and asthma onset was 
collected in the MESA study. The MESA dataset also contains several variables potentially predictive 
of T2D/asthma onset, not considered by the state-of-the-art models, such as clinical variables, 
psychological factors, economic status indicators and neighbourhood characteristics.  

In this deliverable, we will focus on two main tasks: i) the implementation and recalibration of state-of-
the-art models of T2D and asthma onset on the MESA dataset; ii) the identification of new variables 
potentially predictive of T2D and asthma onset, which were not used in the state-of-the-art models, and 
the study of the probabilistic relationships between these variables and the onset of T2D/asthma by 
static Bayesian networks.  
The first task about implementation and recalibration of the state-of-the-art models has a two objectives 
i.e., to compare the performance of the state-of-the-art models on the same population and to assess 
the generalizability of the state-of-the-art models, i.e. how the models perform when they are applied to 
a different population from that in which the models were developed. Assessing the generalizability of 
the models is important to determine if the models can be applied to new populations, and thus to the 
population surveyed in the PULSE pilots. 
The main objective of the second task is the identification of new variables related to the onset of 
T2D/asthma that may be incorporated in new predictive models to improve their performance. The 
incorporation of new variables in the models will be performed in alignment with WP2 to guarantee that 
the new variables are collected in the PULSE pilots and the models can be implemented in the PULSE 
architecture. 

2 THE MESA DATASET 
MESA is a longitudinal study funded by the National Heart, Lung, and Blood Institute starting in July 
2000 and still ongoing. MESA investigates subclinical cardiovascular disease in a sample (n=6,814) of 
population consisting of African-Americans (27.8%), Hispanics (21.9%), Chinese (11.8%), and Whites 
(38.5%) [1]. Participants enrolled were both males and females aged 45-84 years, free of cardiovascular 
diseases. Data were collected from 6 U.S. communities (Baltimore City and Baltimore County, 
Maryland; Chicago, Illinois; Forsyth County, North Carolina; Los Angeles County, California; Northern 
Manhattan and the Bronx, New York; and St. Paul, Minnesota).  In total, five exams were conducted in 
the period 2000-2012. At each exam, subjects were interviewed about their health and lifestyle and 
underwent some clinical assessments. 

Besides the main study, MESA investigators conducted also an ancillary study on respiratory diseases, 
called MESA Lung, in a subset of MESA original cohort. MESA Lung participants underwent a baseline 
examination either at exam 3 or 4 and then a follow-up examination at exam 5. The MESA Lung 
examinations included a spirometry test and a questionnaire on respiratory health. 
The number of subjects surveyed at each exam of MESA and MESA Lung is reported in Table 1. 
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Table 1. Number of subjects surveyed at each MESA and MESA Lung exam. 

Study 
Exam 1 

(Jul 2000 –  
Aug 2002) 

Exam 2 
(Sep 2002 –  
Feb 2004) 

Exam 3 
(Mar 2004 –  
Sep 2005) 

Exam 4 
(Sep 2005 – 
May 2007) 

Exam 5 
(Apr 2010 – 
Dec 2011) 

MESA 6814 6233 5947 5818 4716 

MESA Lung - - 1381 2574 3228 

 

2.1 DATA FOR DIABETES MODEL DEVELOPMENT 
Diabetes was assessed at each MESA exam. In particular, treated diabetes was defined as use of 
insulin of oral hypoglycemic medications, while untreated diabetes was defined as fasting glucose 
concentration ≥126 mg/dL, according to the 2003 American Diabetes Association fasting criteria. For 
the implementation and development of diabetes prediction models, we selected the subsample of 
subjects who satisfied the following three conditions:  

• no diabetes (either treated or untreated) at exam 1  
• no history of cancer at exam 1 
• information on diabetes available at least at one of the follow-up exams  

The selected subsample included 5155 subjects of whom 640 subjects developed diabetes during the 
study. In particular, 184 subjects developed diabetes at exam 2, 106 at exam 3, 147 at exam 4 and 203 
at exam 5. Note that we excluded the subjects having a history of cancer because cancer may have 
significantly compromised the health of these subjects. 
The selected data were split into a training and a test set, including the 80% and 20% of selected 
subjects, respectively, stratified for incidence of diabetes. In particular, the training set contains 4124 
subjects of whom 512 subjects develop diabetes during the follow-up period, while the test set includes 
the remaining 1031 subjects of whom 128 develop diabetes during the follow-up period. 
Dataset for implementation of logistic regression models 
The great majority of state-of-the-art diabetes models described in the literature and, thus, in the present 
deliverable is based on logistic regression. As logistic regression is a static model, i.e., it does not 
explicitly account for the possible time-variability of the outcome, complete dynamic information cannot 
be directly used. This is in contrast to survival analysis techniques, which can naturally incorporate 
information on survival times. To overcome this limitation, a common strategy entails reframing the 
outcome of the models in terms of a simple yes/no question, such as “Will the subject develop diabetes 
in a fixed amount of years following the first observation?”, where the temporal meaning is implied but 
not explicitly modelled. Clearly, the most important parameter in this setting is the choice of a cut-off 
time: cut-offs too close to the baseline observation are unadvisable because diabetes is a slow-
developing illness, while extremely large prediction horizons require observing the training population 
for longer periods of time, which is often impossible. A cut-off time of 8 years, roughly corresponding to 
4 visits, was selected, in line with the typical follow-up times reported in the majority of literature models. 
Labels were then assigned according to the diagram in Figure 1. Diabetes onset was considered to 
have happened (value 1) if it had been observed on or before the cut-off, a subject was deemed to be 
healthy (value 0) at the cut-off if he or she left the study at or after the cut-off and had not developed 
diabetes before leaving the study. The graph also shows that “NaN” values were assigned to subjects 
for whom there was no certain status at the cut-off: this happened for those who left the study without 
diabetes before the cut-off and for those who developed diabetes after the cut-off. Indeed, the former 
could have fallen ill at an unknown date, after leaving the study and there is insufficient information to 
say whether the latter had already developed diabetes at the cut-off. The subjects whose status was 
“NaN” were excluded from the logistic regression analyses related to diabetes. Consequently, the 
maximum available sample size was 3736 (2997 training and 739 test cases).  
 



H2020 - 727816 — PULSE June 2017 D5.3 Incorporation of New Variables into the Models 

 

  11/67 This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No GA727816. 

 
Figure 1. Label assignment strategy. The label value 1 was assigned to cases of diabetes onset by the cut-

off date and 0 to subjects who did not report having diabetes after the cut-off date. “NaN” in the diagram 
means the subjects were excluded from the analysis. For example, the last line is to be interpreted as: "An 

outcome of 1 is reported in the data, but only after year 8; hence, the subject's health status at year 8 is 
unknown (NaN). 

2.2 DATA FOR ASTHMA MODEL DEVELOPMENT 
History of asthma was assessed at the baseline MESA exam by the question “Has a doctor ever told 
you that you had asthma?”. At the follow-up visits, i.e., exams 2-5, new development of asthma was 
assessed by the question “Has a doctor ever told you that you have developed asthma since your last 
MESA visit?”. For the implementation and development of asthma prediction models, we selected the 
subsample of subjects who satisfied the following three conditions:  

• no history of asthma at exam 1  
• no history of cancer at exam 1 
• information on asthma development available at least at one of the follow-up exams  

The selected subsample included 5341 subjects of whom 136 subjects developed asthma during the 
study. In particular, 29 subjects developed asthma at exam 2, 33 at exam 3, 32 at exam 4 and 42 at 
exam 5. As for the diabetes data selection, we decided to exclude the subjects having a history of 
cancer because cancer may have significantly compromise the health of these subjects. 
The selected data were split into a training and a test set, including the 80% and 20% of selected 
subjects, respectively, stratified for incidence of asthma. In particular, the training set contains 4273 
subjects of whom 109 subjects develop asthma during the follow-up period, while the test set includes 
the remaining 1068 subjects of whom 27 develop asthma during the follow-up period. 
Dataset for implementation of logistic regression models 
As the state-of-the-art models of asthma onset are based on logistic regression, which is a static model 
used to predict a binary outcome at a fixed amount of time from baseline, we could not fit the logistic 
regression models on the entire dataset but we had to select a subset of subjects having the outcome 
defined at a certain cut-off time. A different cut-off time for each state-of-the-art model is chosen in order 
to maximize the number of subjects with new asthma onset at time lower of equal to the cut-off time. 
These subjects are assigned label 1. Then, as for the diabetes models, we assumed a subject was 
healthy at the cut-off (label 0) if he or she left the study at or after the cut-off and had not developed 
asthma before leaving the study. Subjects who left the study without asthma before the cut-off and 
subjects who developed asthma after the cut-off, but do not have information on asthma at the cut-off, 
were excluded because the outcome value at the cut-off time is not known. Since the incidence of adult-
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onset asthma on the MESA population is low, we decided to consider a different cut-off time for each 
state-of-the-art model in order to maximize the number of subjects with incident asthma in the selected 
sample (see Section 5.1.2 and Section 5.2.2). 

3 IMPLEMENTATION, RECALIBRATION AND ASSESSMENT OF STATE-OF-
THE-ART MODELS 

State-of-the-art predictive models of diabetes and asthma onset were implemented and recalibrated on 
the selected data by performing the following 5 steps:  

A. Data selection and pre-processing: suitable subsamples of training and test sets are extracted 
by selecting the subjects without missing values on the model independent variables at baseline 
and with sufficient follow-up duration. 

B. Variable pre-processing: model variables were appropriately homogenised to fit their definition 
in the state-of-the-art models. In addition, independent variables were discretized according to 
the same criteria adopted in the state-of-the art models. 

C. Model recalibration: the model parameters were estimated on the training set and on 100 sets 
extracted from the training set by bootstrap resampling, in order to assess the effect of different 
training/test splits on the model performance. 

D. Performance assessment: the performance of the model recalibrated on the entire training set 
was assessed on the test set, while the performance of the models recalibrated on each of the 
100 sets extracted by bootstrap resampling were assessed on the 100 sets of out of bag 
samples not used for the bootstrap training. This second assessment is in the following called 
validation phase. 

E. Comparison with the original model: the performance of the recalibrated model was compared 
to the performance of the original state-of-the-art model both in the test set and the validation 
phase. 

The performance of the prediction models was determined by assessing their discriminatory ability, i.e., 
their ability to correctly rank the subjects according to their risk of diabetes or asthma onset, and their 
calibration, i.e., the extent of agreement between observed incidence of diabetes or asthma and that 
predicted by the model. Two metrics were considered for discriminatory ability: the area under the 
receiver-operating characteristic curve (AU-ROC) and the concordance index (C-index). AU-ROC is a 
metric commonly used to assess classifiers or rankers, like prediction models and risk scores. In 
particular, in the case of a ranker in which higher scores are attributed to subjects at risk for a certain 
clinical outcome (in this case, diabetes or asthma), a threshold can be defined such that only subjects 
with scores higher than the threshold are classified as “at risk”. In this setting, the ROC curve represents 
the plot of the true positive rate (sensitivity) vs. the false positive rate (1-specificity) of the assignment 
to the “at risk class” for different values of the threshold. The AU-ROC is the area under the ROC curve 
and, as such, it varies between 0 and 1, with 0.5 corresponding to a random assignment of the scores. 
The greater the area under the ROC curve, the more accurately discriminatory the score. See Figure 2 
for an example of interpretation of the ROC curves. It can be demonstrated that the AU-ROC is equal 
to the probability that a subject chosen at random from the positive outcome group (in this case, the 
positive outcome is diabetes or asthma onset) is ranked higher than a subject chosen at random from 
the negative outcome group [2]. 
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Figure 2. Representative ROC curves for models with different discriminatory ability. D represents the 
random predictor (AU-ROC = 0.5), A represents the perfect model (AU-ROC = 1), B and C represents 

profiles typically observed for reasonably good predictive models, where B performs better than C (greater 
AU-ROC for B than C). Figure taken from [3].  

 

The C-index, proposed by Harrell et al. [4], is an extension of AU-ROC to be used when information on 
model outcome is available over time. In the case of MESA data, information on the outcome, i.e. 
diabetes or asthma onset, was collected at each exam. In this setting, the time to event is defined as 
the time at which the subject first reported the outcome, for the subjects who developed diabetes or 
asthma, and as the time of their last follow-up interview for those who did not. Then, the C-index is 
defined as the probability that subjects with lower risk score have higher observed time to event, given 
that the order of two observed times to event can be validly inferred. Values of C-index near 0.5 indicate 
that the predictive model is no better than tossing a coin in determining which subject will experience 
the event first, while values of C-index near 0 or 1 indicate the predictive model has good discriminatory 
ability. 

Calibration was assessed by the expected-to-observed event ratio (E/O), i.e., the ratio between the 
expected number of events at a certain time t, obtained as the sum of the probabilities of having diabetes 
or asthma at time t predicted by the model, and the number of observed events at time t [5]. Values of 
E/O close to 1 indicate that the model has good calibration, whereas values significantly higher/lower 
than 1 indicate that the model tends to over/underestimate the event probability.  
In addition, model calibration was also graphically assessed by visualizing the calibration plot at a 
certain time t. The calibration plot represents the number of observed events vs. the number of expected 
events for increasing deciles of predicted event probability. The more the calibration plot is close to the 
line with 0 intercept and 45° slope, the better the model calibration. See Figure 3 for an example of 
interpretation of the calibration plot. 
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Figure 3. Representative calibration plot for a model with good calibration (blue line), a model that 
underestimates actual event probability (red line) and a model that overestimates the actual event 

probability (green line). 

 

4 IMPLEMENTATION, RECALIBRATION AND ASSESSMENT OF STATE-OF-
THE-ART MODELS OF DIABETES ONSET 

Eight state-of-the-art predictive models of diabetes were implemented, recalibrated and assessed on 
the MESA dataset, i.e., the model by Stern et al., the FINDRISC, the ARIC models (3 models), the 
Framingham model, the basic risk score by Kahn et al. and the DPoRT. It was not possible to implement 
the German diabetes risk score because the data on diet collected in MESA were not accessible (a 
special permission is required).  

A new model was also recently developed by Di Camillo et al. [7], i.e. the HAPT2D, which was not 
published at the time of D5.1 and D5.2 writing. The HAPT2D is based on a Cox proportional hazard 
model combining basic and advanced clinical variables, as well as information on lifestyle habits and 
socio-economic indicators. However, the HAPT2D model cannot be implemented on the MESA data 
because some of the model variables cannot be defined by the information available in MESA. In 
particular, the “country” variable is not available in MESA and the categories of the “professional status” 
variable (i.e., clerical, manual worker, student, unknown/unemployed/housewife/retired) are not defined 
in MESA. 

4.1 Clinical model by Stern et al.  

4.1.1 The original model 
In their original work [8], Stern et al. proposed a clinical model for the identification of subjects at high 
risk of developing diabetes based on a set of readily available variables and clinical variables. 
Specifically, they used information on age, gender, ethnicity, BMI, family history of diabetes, together 
with the data from a routine check-up visit (fasting glucose, HDL cholesterol, and diastolic blood 
pressure), to predict the 7.5-year incidence of type 2 diabetes. They estimated and reported the logistic 
regression coefficients and the formula they used to calculate the probability of developing diabetes 
over the 7.5-year follow-up period. Of note, the authors explicitly advise caution in extending the model 
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to different populations or applying it in a clinical setting, as their original cohort comprised only Mexican 
and white Americans, the former of whom were also overrepresented (1791 vs. 1112) in the study 
sample. 

4.1.2 Data selection and preprocessing 
The initial dataset presented in Section 2.1 was further reduced to accommodate the specific 
characteristics of the clinical model by Stern et al., as follows. 

• The authors explicitly state that one of the predictive variables to be used in their model is the 
distinction between the Mexican American and white non-Hispanic American ethnicities. As 
such, black and Asian subjects from the MESA dataset were excluded prior to the analyses; 

• Subjects for whom one or more model variables were not recorded (i.e., had one or more 
missing values) were also discarded. 

The remaining sample comprised 2280 subjects, divided between a training and a test sets of 1839 and 
441 subjects, respectively. Of the 1839 members of the training set, 186 developed diabetes within 8 
years vs. 51 in the test set, thus preserving a similar cases to controls ratio. 

4.1.3 Model implementation and recalibration 

Variable preprocessing 

The variables required for the implementation of the clinical model by Stern et al. were treated as in 
the appendix of the original work [8], with only the following minor deviations. 

• The “Mexican American ethnicity” variable was set to 1 when the subject was recorded in the 
MESA dataset as being of “Hispanic ethnicity”. 

• “Family history of diabetes” in the original study only referred to parents and siblings; here, it 
was extended to also include children. 

Recalibration on the training set 

The training set was used in the recalibration phase to fit a logistic regression model where the 
dependent variable was the onset of type 2 diabetes in an 8-year follow-up window and the independent 
variables were age, gender, Hispanic or white ethnicity, BMI, family history of diabetes, fasting glucose, 
HDL cholesterol, and diastolic blood pressure. See Table 2 of Section 4.1.4 for further details on 
variables distribution across the training and test sets. 

4.1.4 Results 
The data were divided between a training and a test sets, comprising 1839 and 441 subjects, whose 
characteristics are reported in Table 2. As shown in the table, the predictive variables used in the model 
present a similar distribution between the two sets and, in particular, the outcome is observed in a very 
similar percentage of subjects (10.1% vs. 11.6%).  
Table 2. Distribution of Stern et al.’s model variables in the training and test sets reported as percentage of 

subjects in different variable categories for 1/0 variables and as their mean for continuous variables. 

Variable Category % Subjects or mean in the 
training set (N=1839) 

% Subjects or mean in the test 
set (N=441) 

Age [years] - 59.7 59.8 

Female Gender [Boolean] Yes 51.5% 57.1% 

Hispanic ethnicity 
[Boolean] Yes 33.2% 21.4% 
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Variable Category % Subjects or mean in the 
training set (N=1839) 

% Subjects or mean in the test 
set (N=441) 

Fasting glucose [mg/dL] - 88.5 88.2 

Systolic blood pressure 
[mmHg] - 121.7 121.2 

HDL cholesterol [mg/dL] - 51.8 50.8 

BMI [kg/m2] - 28.0 28.3 

Family history of diabetes 
[Boolean] Yes 34.1% 30.6% 

8-year incidence of type 2 
diabetes [Boolean] Yes 10.1% 11.6% 

 

The logistic regression coefficients of the original and recalibrated models are summarized in Table 3. 
The signs and orders of magnitude for all coefficients are consistent between the models. The most 
substantial variations are in the importance given to the “age” and “systolic blood pressure” variables, 
both much closer to zero after recalibration. On the contrary, not surprisingly, the coefficients were re-
balanced so that the importance of fasting glucose in the final probability evaluation was greatly 
increased, from 0.079 to 0.133. 

Table 3. Coefficients of the clinical model by Stern et al. (fourth column) compared with those of the 
recalibrated version on the MESA dataset (third column). 

Variable Value Recalibrated model coefficient Original model coefficient 

Intercept - -17.483 -13.415 

Age [years] - 0.003 0.028 

Female Gender [Boolean] Yes 0.252 0.661 

Hispanic ethnicity [Boolean] Yes 0.129 0.412 

Fasting glucose [mg/dL] - 0.133 0.079 

Systolic blood pressure 
[mmHg] - 0.001 0.018 

HDL cholesterol [mg/dL] - -0.014 -0.039 

BMI [kg/m2] - 0.091 0.070 

Family history of diabetes 
[Boolean] Yes 0.534 0.481 

 

A summary of the performances in terms of discrimination ability of the original and recalibrated models 
is presented in Table 4. As it can be seen, the results are quite satisfactory, before and after 
recalibration: regardless of the way they were assessed (in the validation phase or on the test set, on 
the original or on the recalibrated models) the AU-ROC was 0.87 and the C-index 0.86, denoting a very 
high discrimination power. A visual inspection of the ROCs represented in Figure 4 confirms this 
assessment even though it could be argued that recalibrating the model slightly favoured a steeper 
initial increase of the curve.  
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Table 4. Performance of Stern et al.’s clinical model: AU-ROC and C-index for the recalibrated and original 
models assessed during the validation phase (mean ± SD over the 100 bootstrap resamplings) and on the 

test set. 

Model Metric Bootstrap validation Test set 

Recalibrated logistic 
regression 

AU-ROC at 8 years 0.871 (± 0.022) 0.873 

C-index 0.858 (± 0.021) 0.857 

Original logistic regression 
AU-ROC at 8 years 0.872 (± 0.020) 0.871 

C-index 0.858 (± 0.019) 0.856 

 

 
Figure 4. ROC curve for the original (blue) and recalibrated (orange) versions of Stern et al.’s clinical 

model. The dashed line indicates random chance. 

 

Table 5 and Figure 5– which serves as its graphical counterpart— show that, although discrimination 
performance was very similar, the recalibrated model greatly outperformed the original one in terms of 
calibration. Indeed, the latter had a distinct tendency to overestimate the actual probability of developing 
diabetes (E/O ratio of 1.77, greatly exceeding 1), while the former was very well-calibrated.  

Table 5. Calibration of Stern et al.’s clinical model: E/O ratios and their 95% confidence intervals for the 
recalibrated and original models assessed on the test set. 

Model Metric Test set 

Recalibrated logistic regression E/O ratio [95% CI] 0.92 [0.70 – 1.21] 

Original logistic regression E/O ratio [95% CI] 1.77 [1.34 – 2.32] 
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Figure 5. Calibration plot for Stern et al.’s clinical model in its original (blue) and recalibrated (orange) versions. The 

dashed line represents perfect calibration. 

4.2 FINDRISC 

4.2.1 The original model 
The FINDRISC is a risk assessment tool for onset of drug-treated T2D, which is based on easily 
available individual information that can be collected by questionnaires on medical history and health 
behaviour and a simple clinical examination without any laboratory tests. The FINDRISC was developed 
by Lindström and Tuomilehto [9] on the data of 4746 Finnish subjects (aged 34-64, not on antidiabetic 
drug therapy) who responded to a baseline survey in 1987 and a follow-up survey in 1997. These data 
were used to fit a logistic regression model with drug-treated diabetes at follow-up (10 years) as the 
dependent variable and 7 known risk factors for diabetes as independent variables, i.e. age, BMI, waist 
circumference, use of blood pressure medication, history of high blood glucose/diabetes, insufficient 
physical activity and less than daily consumption of fruits, vegetables, and berries. Based on the 
estimated β coefficients of the logistic regression, a risk score was assigned to each of the risk factors. 
The FINDRISC score was defined as the sum of the risk scores of each variable. In addition to a “full” 
model, comprising the entire list of variables, Lindström and Tuomilehto [9] also proposed a “concise” 
model from which physical activity and fruit and vegetables consumption were omitted as they had not 
demonstrated a statistically significant association with drug-treated diabetes after the assessment of 
the “full” model. External validation of the FINDRISC was performed by Lindström and Tuomilehto [9] 
in 4615 not drug-treated subjects that responded to a baseline survey in 1992 and were observed over 
a follow-up of 5 years (vs. 10 in the development cohort) for incidence of drug-treated diabetes. 

4.2.2 Data selection and preprocessing 
The initial dataset presented in Section 2.1 was further reduced to accommodate the specific 
characteristics of the FINDRISC concise model. The full version of the model was impossible to 
implement on the MESA dataset because of the irrecoverable mismatch between the way physical 
activity and diet were recorded therein, and the format needed to incorporate them into the full 
FINDRISC model. Additionally 

• subjects for whom one or more model variables were not recorded were discarded. 
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The remaining sample comprised 3641 subjects, divided between a training and a test sets of 2990 and 
651 subjects, respectively. Of the 2990 members of the training set, 347 developed diabetes within 8 
years vs. 87 in the test set, thus preserving a similar cases to controls ratio. 

4.2.3 Model implementation and recalibration 

Variable preprocessing 

The variables required for the implementation of the concise FINDRISC model were treated as in the 
original work [9], with only the following minor deviation. 

• The age category of people aged between 55 and 65 was extended to also include anyone 
older than 65. 

Recalibration on the training set 

The training set was used in the recalibration phase to fit a logistic regression model where the 
dependent variable was the onset of type 2 diabetes in an 8-year follow-up window and the independent 
variables were age, gender, BMI, waist circumference, use of anti-hypertensive medications, and family 
history of diabetes. See Table 7 of Section 4.2.4 for further details on variables distribution across the 
training and test sets. Based on the logistic regression β-coefficients, partial scores were assigned to 
each variable, applying the same criteria adopted by Lindström and Tuomilehto [9]. These coefficient-
to-score conversion rules are reported in Table 6. The recalibrated concise FINDRISC score was 
calculated by adding together all the partial scores.   

Table 6. Point assignment criterion in the FINDRISC 

β coefficient Points 

0.01 – 0.2 1 

0.21 – 0.8 2 

0.81 – 1.2 3 

1.21 – 2.2 4 

>2.2 5 

 

4.2.4 Results 
The characteristics of the training and test subpopulations are reported in Table 7. As shown in the 
table, the predictive variables used in all the models present a similar distribution between the two 
sets and, in particular, the outcome is observed in a very similar percentage of subjects (11.6% vs. 
11.8%).  Of note, the two age categories span the entire dataset: no subjects considered in the 
analysis are younger than 45. This unintended effect is due to the unavoidable exclusions of subjects 
detailed in Section 4.2.2. 
Table 7. Distribution of FINDRISC variables in the training and test sets reported as percentage of subjects 

in different variable categories. 

Variable Category 
% Subjects training set 

(N=2990) 
% Subjects test set 

(N=651) 

Age [years] 
45-54 35.5% 37.3% 

≥55 64.5% 62.7% 

BMI [kg/m2] 25 to <30 39.6% 38.6% 
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Variable Category 
% Subjects training set 

(N=2990) 
% Subjects test set 

(N=651) 

≥30 29.1% 31.0% 

Waist circumference [cm] 

Men: 94 to <102 

Women: 80 to <88 
25.0% 23.3% 

Men: ≥102 

Women: ≥88 
50.4% 51.2% 

Use of blood pressure 
medication [Boolean] Yes 31.0% 26.3% 

History of high blood 
glucose [Boolean] Yes 1.1% 1.4% 

8-year incidence of drug-
treated diabetes [Boolean] Yes 11.6% 11.8% 

 

Table 8 presents a detailed overview of the scores and coefficients that were obtained after recalibration 
and a comparison between them and those in the published model by Lindström and Tuomilehto. As it 
is apparent, refitting the model on the MESA dataset had a noticeable impact on many coefficients and 
partial scores. Indeed, with the exception of “use of blood pressure medication,” “history of high blood 
glucose,” and “BMI ≥30”, all the other scores were modified: “BMI 25 to <30” changed from the original 
1 to a 2-points risk factor, whereas both waist circumference categories were rescaled to the same 
partial score of 2 vs. 3 and 4 in the original model. The logistic regression coefficients were similarly 
affected, although less noticeably: their signs and orders of magnitude were consistent with the 
literature version of the FINDRISC. The difference in coefficients (0 vs. 0.628, 0.064 vs. 0.892) and 
scores (0 vs. 2, 1 vs. 3) related to the two age categories deserves a special comment. Recall that in 
the first paragraph of Section 3.2.4 the unavailability of subjects younger than 45 was highlighted as a 
peculiarity of the reduced training set used for this analysis. As a direct consequence of this, the 
coefficient associated with one of the two age categories and the intercept are highly collinear. Thus, 
the problem of estimating their values is ill posed, i.e. it is only possible to give a stable estimate for 
their sum total. To address this issue, the “Age 45-54” category was considered as the baseline and its 
coefficient and score were fixed to 0. In this way, it was possible to estimate reasonable values for the 
related parameters, namely “Age 55-64” and the intercept. 

Table 8. Coefficients and points of the recalibrated FINDRISC concise model (third and fourth column) 
compared to the coefficients and points of the original FINDRISC concise model (fifth and sixth column). 

The asterisk (*) denotes values that were fixed because of dataset characteristics. 

Variable Value Recalibrated 
coefficient 

Recalibrated 
points 

Original 
coefficient 

Original 
points 

Intercept - -3.440 - -5.514 - 

Age [years] 
45-54 0(*) 0(*) 0.628 2 

55-64 0.064 1 0.892 3 

BMI [kg/m2] 
25 to <30 0.354 2 0.165 1 

≥30 0.949 3 1.096 3 

Waist circumference 
[cm] 

Men: 94 to <102 

Women: 80 to 
<88 

0.663 2 0.857 3 

Men: ≥102 0.731 2 1.350 4 
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Variable Value Recalibrated 
coefficient 

Recalibrated 
points 

Original 
coefficient 

Original 
points 

Women: ≥88 

Use of blood 
pressure medication 

[Boolean] 
Yes 0.574 2 0.711 2 

History of high blood 
glucose [Boolean] Yes 2.716 5 2.139 5 

 

A summary of the performances in terms of discrimination ability of the original and recalibrated models 
is presented in Table 9. At a close inspection, the table reveals a dichotomous pattern in the effects of 
recalibration: the logistic regression model, used to estimate a probability value for T2D, slightly 
benefitted from recalibration, whereas the recalibrated score performance was diminished. A likely 
explanation of this behaviour lies in the lack of flexibility of the coefficient-to-score conversion rules 
presented in [9]. Indeed, the original authors only provide hard thresholds (see Table 6) for the 
construction of the final score, but no hint as to their rationale for coming up with them. As these 
thresholds are most likely data-dependent, they may be negatively affected by a change in datasets. 
Figure 6 helps in visualising the extent of the performance deterioration introduced when passing from 
the continuous-valued logistic regression prediction to the discrete score. It could be argued, then, that 
if one were interested in defining a score of comparable performance to the logistic regression model, 
the first logical step would be building a new coefficient-to-score table similar to Table 6. This procedure, 
however, deviates from the scope of the present work, whose main goal is recalibrating and validating 
literature models as they are, introducing as little modifications as possible, to achieve a fair 
comparison. 

Table 9. Performance of the of the FINDRISC concise model: AU-ROC and C-index for the recalibrated 
score, recalibrated logistic regression and original score assessed during the validation phase (mean ± SD 

over the 100 bootstrap re-samplings) and on the test set. 

Model Metric Bootstrap validation Test set 

Recalibrated score 
AU-ROC at 8 years 0.679 (± 0.020) 0.715 

C-index 0.670 (± 0.019) 0.706 

Recalibrated logistic 
regression 

AU-ROC at 8 years 0.683 (± 0.019) 0.738 

C-index 0.674 (± 0.018) 0.729 

Original score 
AU-ROC at 8 years 0.690 (± 0.018) 0.732 

C-index 0.680 (± 0.017) 0.722 

Original logistic regression 
AU-ROC at 8 years 0.692 (± 0.018) 0.735 

C-index 0.682 (± 0.017) 0.726 
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Figure 6.ROC curves for the original (blue) and recalibrated (orange) versions of the concise FINDRISC 

model (logistic regression on the left, scores on the right). The dashed line indicates random chance. 

Table 10 and Figure 7 –which serves as its graphical counterpart— show that, although discrimination 
performance was very similar, the recalibrated model greatly outperformed the original one in terms of 
calibration. Indeed, the latter had a distinct tendency to underestimate the actual probability of 
developing diabetes (E/O ratio of just 0.52), while the former was very well-calibrated. These results 
are only applicable to the logistic regression version of the FINDRISC model, because calibration curves 
and E/O ratios are only meaningful if the output is a probability and, as such, are impossible to compute 
on a discrete score. 
Table 10. Calibration of the concise FINDRISC model: E/O ratios and their 95% confidence intervals for the 

recalibrated and original models assessed on the test set. 

Model Metric Test set 

Recalibrated logistic regression E/O ratio [95% CI] 0.98 [0.79 – 1.21] 

Original logistic regression E/O ratio [95% CI] 0.52 [0.42 – 0.64] 
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Figure 7. Calibration plot for the concise FINDRISC in its original (blue) and recalibrated (orange) versions. 

The dashed line represents perfect calibration. 

4.3 ARIC models  

4.3.1 The original model 
The ARIC models are a set of 3 models proposed by Schmidt et al. in 2005 [6] to predict the risk for 
diabetes. Each of the models builds upon its previous iteration by increasing the total amount of 
considered variables: the base model includes age, ethnicity, family history of diabetes, systolic blood 
pressure, waist circumference, and height; the second model adds fasting glucose to the equation; and, 
finally, the third, most comprehensive model, also incorporates information on HDL cholesterol and 
triglycerides concentrations. All of these were derived by applying logistic regression to the appropriate 
set of variables to predict the risk of developing diabetes in middle-aged, white, and African-American 
adults over the course of 9 years. The original dataset was collected within the Atherosclerosis Risk in 
Communities (ARIC) study and comprised 7915 participants, 1292 of whom developed diabetes. 

4.3.2 Data selection and preprocessing 
The initial dataset presented in Section 2.1 was further reduced to accommodate the specific 
characteristics of the ARIC models. 

• The authors explicitly state that one of the predictive variables to be used in their model is the 
distinction between the African-American and white American ethnicities. As such, Hispanic and 
Asian subjects from the MESA dataset were excluded prior to the analyses. 

• Subjects for whom one or more model variables were not recorded were also discarded. 
The remaining sample comprised 2401 subjects, divided between a training and a test sets of 1934 and 
467 subjects, respectively. Of the 1934 members of the training set, 196 developed diabetes within 8 
years vs. 48 in the test set, thus preserving a similar cases to controls ratio. All the three models were 
validated and recalibrated on the same subset of MESA data. 
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4.3.3 Model implementation and recalibration 

Variable preprocessing 

The variables required for the implementation of the three ARIC models were treated as in the 
description of the first table in the original work [10], with only the following minor deviation. 

• “Family history of diabetes” in the original study only referred to parents; here, it was extended 
to also include siblings and children. 

Recalibration on the training set 

The training set was used in the recalibration phase to fit three logistic regression models, where the 
dependent variable was the onset of type 2 diabetes in an 8-year follow-up window and the independent 
variables were:  

• age, gender, black or white ethnicity, family history of diabetes, systolic blood pressure, waist 
circumference, height for the base model; 

• all the variables in the base model plus fasting glucose for the second model; 
• all the variables in the base model plus fasting glucose, HDL cholesterol concentration and 

triglycerides concentration for the third model. 
See Table 11 of Section 4.3.4 for further details on variables distribution across the training and test 
sets. 

4.3.4 Results 
The characteristics of the training and test subpopulations are reported in Table 11. As shown in the 
Table, the predictive variables used in all the models present a similar distribution between the two sets 
and, in particular, the outcome is observed in a very similar percentage of subjects (10.1% vs. 10.3%).  
Table 11. Distribution of ARIC variables in the training and test sets reported as percentage of subjects in 

different variable categories for 1/0 variables and as their mean for continuous variables. 

Variable Category % Subjects or mean in the 
training set (N=1934) 

% Subjects or mean in the 
test set (N=467) 

Age [years] - 60.0 59.8 

Black ethnicity [Boolean] Yes 36.6% 38.8% 

Family history of diabetes 
[Boolean] Yes 34.8% 31.7% 

Systolic blood pressure 
[mmHg] - 123.9 123.3 

Waist circumference [cm] - 97.7 97.7 

Height [cm] - 169.3 168.7 

Fasting glucose [mg/dL] - 88.2 87.5 

HDL cholesterol [mg/dL] - 53.6 52.2 

Triglycerides [mg/dL] - 117.6 118.5 

8-year incidence of type 2 
diabetes [Boolean] Yes 10.1% 10.3% 
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The logistic regression coefficients of the original and recalibrated models are summarized in Table 12. 
The models are presented from left to right in order of increasing complexity. Across all versions of the 
model, coefficients were, for the most part, adjusted in a consistent way as a result of recalibration. For 
instance, in all recalibrated models the recalibrated waist circumference coefficients are very close to 
their respective original values (0.0476 vs. 0.412, 0.0276 vs. 0.0328, 0.0257 vs. 0.0273) and all “Family 
history of diabetes” coefficients are approximately doubled after recalibration (0.9602 vs. 0.5463, 
0.8660 vs. 0.5088, 0.8523 vs. 0.4981). Compared to the original model, the coefficients related to 
subjects’ ages and heights had the opposite sign after recalibration 2/3 and 1/3 times, respectively. This 
suggests that in the MESA dataset, the influences of age and height on T2D risk are not as clear as in 
the original study cohort. In the second and third model, the coefficients related to fasting glucose were 
greatly increased after recalibration. This effect suggests the great predictive ability of fasting glucose 
in the MESA dataset, already seen for Stern’s model in Section 4.1. On the contrary, the other 
biomarkers added in the third ARIC model saw their coefficients shrink to half their original value, 
possibly signaling their diminished importance relative to fasting glucose. 

Table 12. Coefficients of the three ARIC models in their original and recalibrated versions. 

Variable 
Base model Base + glucose model Base + glucose + 

lipids model 

Recal. Original Recal. Original Recal. Original 

Intercept -10.3354 -7.3359 -15.7518 -12.2555 -14.5921 -9.9808 

Age [years] 0.0123 0.0271 -0.0176 0.0168 -0.0155 0.0173 

Black ethnicity [Boolean] 0.3715 0.2295 0.2210 0.2361 0.2900 0.4433 

Family history of diabetes 
[Boolean] 0.9602 0.5463 0.8660 0.5088 0.8523 0.4981 

Systolic blood pressure [mmHg] 0.0128 0.0161 0.0095 0.0120 0.0092 0.0111 

Waist circumference [cm] 0.0476 0.0412 0.0276 0.0328 0.0257 0.0273 

Height [cm] 0.0020 -0.0115 -0.0124 -0.0261 -0.0162 -0.0326 

Fasting glucose [mg/dL] - - 0.1305 0.0913 0.1284 0.0880 

HDL cholesterol [mg/dL] - - - - -0.0079 -0.0122 

Triglycerides [mg/dL] - - - - 0.0012 0.00271 

 

A summary of the performances in terms of discrimination ability of the original and recalibrated models 
is presented in Table 13. In all cases, recalibration improved the performance on the test set. However, 
its advantages were clearly overshadowed by the inclusion of fasting glucose as a variable, as 
evidenced by the substantial improvement in AU-ROC and C-index between the base model and its 
more comprehensive variants. Indeed, the original model C-index leapt from a base value of 0.763 to 
a satisfactory 0.837 when fasting glucose was considered. The same phenomenon can be observed 
on the recalibrated models: the baseline 0.794 C-index increased to 0.853 in the second ARIC model. 
The benefit of also including lipids information was not clearly observable in either the original or 
recalibrated version of the third model, compared to the second one. By examining, it is apparent that 
recalibration had a greater relative effect on the base model and was only marginally useful for the 
second and third versions of the ARIC model. 
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Table 13. Performance of the ARIC models: AU-ROC and C-index for the recalibrated and original models 
assessed during the validation phase (mean ± SD over the 100 bootstrap resamplings) and on the test set. 

Model Metric Bootstrap validation Test set 

Recalibrated base model 
AU-ROC at 8 years 0.750 (± 0.024) 0.812 

C-index 0.737 (± 0.023) 0.794 

Original base model 
AU-ROC at 8 years 0.750 (± 0.021) 0.776 

C-index 0.736 (± 0.020) 0.763 

Recalibrated base + 
glucose model 

AU-ROC at 8 years 0.861 (± 0.023) 0.870 

C-index 0.849 (± 0.022) 0.853 

Original base + glucose 
model 

AU-ROC at 8 years 0.861 (± 0.023) 0.852 

C-index 0.850 (± 0.022) 0.837 

Recalibrated base + 
glucose + lipids model 

AU-ROC at 8 years 0.861 (± 0.023) 0.873 

C-index 0.848 (± 0.022) 0.849 

Original base + glucose + 
lipids model 

AU-ROC at 8 years 0.864 (± 0.023) 0.857 

C-index 0.851 (± 0.022) 0.842 
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Figure 8. ROC curves for the original (blue) and recalibrated (orange) versions of the three ARIC models 
(base model on the top left, base + glucose on the top right, base + glucose + lipids on the bottom). The 

dashed line indicates random chance. 

 

Table 14 and Figure 9 –which serves as its graphical counterpart— show how only the base model was 
badly calibrated (E/O ratio = 2.29, denoting frequent overestimation) and the clear superiority of its 
recalibrated version in this sense (E/O = 0.99). They also highlight the overall good quality of the ARIC 
models that include glucose information, which exhibit E/O ratios close to 1 both before and after 
recalibration. 

Table 14. Calibration of the three ARIC models: E/O ratios and their 95% confidence intervals for the 
recalibrated and original models assessed on the test set. 

Model Metric Test set 

Recalibrated base model E/O ratio [95% CI] 0.99 [0.75 – 1.31] 

Original base model E/O ratio [95% CI] 2.29 [1.72 – 3.03] 

Recalibrated base + glucose model E/O ratio [95% CI] 0.94 [0.71 – 1.25] 
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Model Metric Test set 

Original base + glucose model E/O ratio [95% CI] 1.13 [0.85 – 1.50] 

Recalibrated base + glucose + lipids 
model E/O ratio [95% CI] 0.95 [0.72 – 1.26] 

Original base + glucose + lipids 
model E/O ratio [95% CI] 1.17 [0.89 – 1.56] 

 

 
Figure 9. Calibration for the original (blue) and recalibrated (orange) versions of the three ARIC models 

(base model on the top left, base + glucose on the top right, base + glucose + lipids on the bottom).  The 
dashed line represents perfect calibration. 
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4.4 Framingham model 

4.4.1 The original model 
In their original work [11], Wilson et al. proposed a number of clinical models for the estimation of the 
risk of T2D 7 years after the baseline visit. Among those, we selected the one for “multivariate prediction 
of T2D according to simple clinical variables”, as it reportedly over-performed its simpler variants while 
not needing excessively specific information such as the result of an oral glucose tolerance test. For 
that model, they selected age, gender, BMI, family history of diabetes, hypertension medications, 
fasting glucose, HDL cholesterol, and blood pressure as covariates of interest. They fitted a logistic 
regression model on 3140 subjects, 160 of whom developed T2D, and reported the odds ratios linking 
each variable to the 7-year onset of diabetes. They also converted their “simple clinical model” into a 
scoring system, but did not explicitly state the criteria or the thresholds they used to translate odd ratios 
into partial scores.  

4.4.2 Data selection and preprocessing 
The initial dataset presented in Section 2.1 was further reduced to accommodate the specific 
characteristics of the Framigham model. 

• Subjects for whom one or more model variables were not recorded were discarded. 

The remaining sample comprised 3595 subjects, divided between a training and a test sets of 2879 and 
716 subjects, respectively. Of the 2879 members of the training set, 324 developed diabetes within 8 
years vs. 82 in the test set, thus preserving a similar cases to controls ratio. 

4.4.3 Model implementation and recalibration 

Variable preprocessing 

The variables required for the implementation of the Framingham model were treated as in the appendix 
of the original work [11], with only the following minor deviation. 

• “Hypertension or anti-hypertensive therapy” was set to 1 if the subject reported taking anti-
hypertensive medications, had systolic blood pressure values ≥130, or diastolic blood pressure 
values≥85. Compare this with the original “Participants with a blood pressure level of 
130/85mmHg or higher or receiving treatment for hypertension” [11]. 

• “Family history of diabetes” in the original study only referred to parents; here, it was extended 
to also include siblings and children. 

Recalibration on the training set 

The training set was used in the recalibration phase to fit a logistic regression model where the 
dependent variable was the onset of type 2 diabetes in an 8-year follow-up window and the independent 
variables were age, gender, BMI, fasting glucose, HDL cholesterol, family history of diabetes, 
triglycerides, and hypertension (medicated or otherwise). See Table 15 of Section 4.4.4 for further 
details on variables distribution across the training and test sets. 
The original score system was not recalibrated on the MESA dataset due to the lack of information 
concerning the coefficient-to-score conversion system (see Section 4.2.3 for an example of a similar 
system). Furthermore, the actual rule used by the authors was impossible to reverse-engineer because 
of the major gaps between scores (e.g., highest score, Fasting glucose = 10 points vs. second highest 
score, BMI = 5 points). 
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4.4.4 Results 
The characteristics of the training and test subpopulations are reported in Table 15. As shown in the 
table, the predictive variables used in all the models present a similar distribution between the two sets 
and, in particular, the outcome is observed in a very similar percentage of subjects (11.3% vs. 11.5%).  
Table 15. Distribution of Framingham model variables in the training and test sets reported as percentage 

of subjects in different variable categories for 1/0 variables and as their mean for continuous variables. 

Variable Category 
% Subjects training set 

(N=2879) 
% Subjects test set 

(N=716) 

Age [years] 
50-64 50.3% 47.1% 

≥65 33.8% 34.5% 

Gender [Boolean] Male 47.3% 43.0% 

BMI [kg/m2] 
25 to <30 39.8% 39.0% 

≥30 29.6% 30.6% 

Fasting glucose [mg/dL] >100 to 126 13.4% 12.3% 

HDL cholesterol [mg/dL] 
Men: <40 

Women: <50 
32.9% 36.6% 

Family history of diabetes 
[Boolean] Yes 35.9% 31.8% 

Triglycerides [mg/dL] ≥150 26.8% 29.1% 

Hypertension or anti-
hypertensive therapy 

[Boolean] 
Yes 49.5% 46.1% 

8-year incidence of drug-
treated diabetes [Boolean] Yes 11.3% 11.5% 

 

The coefficients of the original and recalibrated logistic regression models are presented in   
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Table 16. Note that, while in [11] the coefficients are reported in terms of odds ratios, here they have 
been calculated using the following simple formula. 

coefficient = ln(odds ratio) 
The recalibrated coefficients are consistent with the original ones, for the most part. There was a sign 
inversion between the original (negative) and recalibrated (positive) coefficients associated with age. 
However, as the former were comparatively very close to 0, this may just have been an effect of the 
different composition of the MESA dataset (e.g., few subjects younger than 45). Possibly for similar 
reasons, the absolute value of the male gender coefficient increased twenty-fold, reaching -0.2. A shift 
in the weight of the biomarkers on the final prediction was also apparent: a parallel could be 
established between the increase of the fasting glucose coefficient (2.552 vs. the original 1.981) and 
the decrease of the HDL cholesterol and triglycerides ones (respectively, 0.497 vs. the original 0.944 
and 0.092 vs. 0.577). 
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Table 16. Coefficients of the Framingham model (fourth column) compared with those of the recalibrated 
version on the MESA dataset (third column). 

Variable Value Recalibrated model 
coefficient Original model coefficient 

Intercept - -3.901 -5.517 

Age [years] 
50-64 0.177 -0.020 

≥65 0.138 -0.083 

Gender [Boolean] Male -0.202 -0.010 

BMI [kg/m2] 
25 to <30 0.216 0.300 

≥30 0.782 0.916 

Fasting glucose [mg/dL] >100 to 126 2.552 1.981 

HDL cholesterol [mg/dL] 
Men: <40 

Women: <50 
0.479 0.944 

Family history of diabetes 
[Boolean] Yes 0.638 0.565 

Triglycerides [mg/dL] ≥150 0.092 0.577 

Hypertension or anti-
hypertensive therapy 

[Boolean] 
Yes 0.392 0.500 

 

The discrimination performance of the Framingham model is summarised in Table 17. Based on that 
information, it is quite hard to determine whether recalibration had any tangible effects on the AU-ROC 
and C-index metrics: on the one hand, test results were slightly better for the recalibrated model; on the 
other, the average bootstrap performance was slightly worse after recalibration, although the difference 
was not statistically significant. Figure 10 also highlights this behaviour: the recalibrated model slightly 
outperforms the original ones for low (1 – Specificity) values, but is overtaken by the latter for (1 – 
Specificity > 0.4). 
 

Table 17. Performance of the Framingham model: AU-ROC and C-index for the recalibrated and original 
models assessed during the validation phase (mean ± SD over the 100 bootstrap resamplings) and on the 

test set. 

Model Metric Bootstrap validation Test set 

Recalibrated logistic 
regression 

AU-ROC at 8 years 0.813 (± 0.019) 0.855 

C-index 0.799 (± 0.018) 0.839 

Original logistic regression AU-ROC at 8 years 0.815 (± 0.019) 0.853 

C-index 0.802 (± 0.018) 0.837 
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Figure 10. ROC curve for the original (blue) and recalibrated (orange) versions of Framingham model. The 

dashed line indicates random chance. 

 

Table 18 and Figure 11 – which serves as its graphical counterpart— show that, although discrimination 
performance was very similar, the recalibrated model greatly outperformed the original one in terms of 
calibration. Indeed, the latter had a distinct tendency to underestimate the actual probability of 
developing diabetes (E/O ratio of 0.36), while the former was very well-calibrated.  

Table 18. Calibration of the Framingham model: E/O ratios and their 95% confidence intervals for the 
recalibrated and original models assessed on the test set. 

Model Metric Test set 

Recalibrated logistic regression E/O ratio [95% CI] 0.98 [0.79 – 1.21] 

Original logistic regression E/O ratio [95% CI] 0.36 [0.29 – 0.44] 

 

 
Figure 11. Calibration plot for the Framingham model in its original (blue) and recalibrated (orange) 

versions. The dashed line represents perfect calibration. 
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4.5 Basic risk score by Kahn et al. 

4.5.1 The original model 
Kahn et al. developed a basic risk score system [12] to identify adults at high risk of T2D by using 
longitudinal data from the ARIC Study, which included 15,792 white and black adults aged 45 to 64 at 
baseline which were followed-up for 14.9 years. This risk score system includes only simple variables 
that do not require any clinical examination, i.e., age, parental history of diabetes, ethnicity, 
hypertension, waist circumference, height, weight, resting pulse and smoking. The risk score system 
was derived from the coefficients of a Weibull proportional hazard regression model, which was used 
to model the effect of risk factors on time to diabetes onset. In particular, each variable was assigned a 
point score proportional to the respective β coefficient in the Weibull proportional hazard regression 
model. Then, the point score values were normalized so that the maximum total score was equal to 
100. The risk score was internally validated to predict the 10-year diabetes incidence. 

Note that Kahn et al. also developed an enhanced risk score that additionally includes variables 
collected in a blood specimen. However, the enhanced risk score could not be assessed because not 
all the variables in the enhanced score were collected in MESA. 

4.5.2 Data selection and preprocessing 
The initial dataset presented in Section 2.1 was further reduced to accommodate the specific 
characteristics of the Kahn risk score system. 

• As in the ARIC models of Section 4.3, one of the predictive variables to be used in Kahn’s score is 
the distinction between the African-American and white American ethnicities. As such, Hispanic and 
Asian subjects from the MESA dataset were excluded prior to the analyses. 

• Subjects for whom one or more model variables were not recorded were also discarded. 
The remaining sample comprised 2799 subjects, divided between a training and a test sets of 2247 and 
552 subjects, respectively. In particular, diabetes was developed during the follow-up by 231 subjects 
of the training and 63 subjects of the test set, thus a similar diabetes incidence was maintained between 
training and test sets. 

4.5.3 Model implementation and recalibration 

Variable preprocessing 

The variables required for the implementation of the Kahn basic risk score were selected from the MESA 
variable list and treated as in the original work [12]. In particular, the “hypertension” variable was defined 
as a binary variable equal to 1 if either systolic blood pressure is ≥140 mmHg or diastolic blood pressure 
is ≥90 mmHg. 

Recalibration on the training set 

In the training set, the Weibull proportional hazard regression model was fitted using the diabetes events 
and the respective times as outcome, and the following variables as independent variables: diabetic 
mother, diabetic father, hypertension, age, black race, ever smoking, waist circumference, height, 
weight and resting heart rate. From the model β coefficient, a recalibrated score was derived by 
adopting the same criteria of Kahn et al. [12].  

4.5.4 Results 
The characteristics of the training and test subpopulations are reported in Table 19. As shown in the 
table, the predictive variables used by the model present a similar distribution between the two sets 
and, in particular, the outcome is observed in a similar percentage of subjects (10.3% vs. 11.4%).  
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Table 19. Distribution of Kahn risk score variables in the training and test sets reported as percentage of 
subjects in different variable categories. 

Variable Category 
% Subjects training set 

(N=2247) 
% Subjects test set 

(N=552) 

Age [years] ≥55 66.9% 65.9% 

Race [Boolean] Black 34.5% 36.6% 

Diabetic mother [Boolean] Yes 15.3% 13.8% 

Diabetic father [Boolean] Yes 11.5% 13.4% 

Hypertension [Boolean] Yes 45.6% 43.7% 

Ever smoker [Boolean] Yes 58.2% 60.0% 

Waist circumference [cm] 

Men: 90 to <95 

Women: 81 to <88 
15.5% 15.8% 

Men: 95 to <100 

Women: 88 to <96 
19.4% 19.8% 

Men: 100 to <106 

Women: 96 to <105 
20.2% 18.5% 

Men: ≥ 106 

Women: ≥105 
27.0% 28.8% 

Height [cm] 

Men: <171 

Women <157 
18.8% 19.4% 

Men: 171 to <175 

Women: 157 to <161 
22.1% 21.9% 

Men: 175 to <178 

Women: 161 to <164 
17.9% 18.1% 

Weight [kg] 
Men: ≥ 86.4 

Women: ≥ 72.7 
49.9% 49.1% 

Heart rate [beats/min] 
Men: ≥ 68 

Women: ≥ 70 
22.3% 23.2% 

Incidence of diabetes 
[Boolean] Yes 10.3% 11.4% 

 

The coefficients of the model recalibrated in the whole training set are reported in Table 20, as well as 
the recalibrated score and the original score. Unfortunately, the coefficients of the recalibrated model 
cannot be compared to those of the original model because they were not reported in the paper by 
Kahn et al. [12]. For some of the variables, the recalibrated score differs significantly from the original 
one. For example, the “age ≥5” class was assigned 5 points in the original score vs. 0 in the recalibrated 
one. The higher categories of weight and heart rate were also assigned less points in the recalibrated 
model compared to the original one. However, other risk factors like black race and elevated waist 
circumference got more points in the recalibrated score vs. the original one. The points assigned to the 
height categories do not agree with the trend observed in the original score. In particular, the 
intermediate class is assigned a negative partial score in the recalibrated score, while all the height 
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classes present positive partial score in the original score. This difference may indicate the recalibrated 
model does not capture correctly the effect of height on the MESA data because of a suboptimal 
categorization of this variable. Alternatively, in the MESA population height may not have the same 
predictive power it had in the ARIC population studied by Kahn et al.   

Table 20. Coefficients of the recalibrated Weibull proportional hazard model (third column), score points of 
the recalibrated Kahn’s score (fourth column) and score points of the original Kahn’s score (fifth column). 

Variable Category 
Coefficients of 
the recalibrated 

model 
Recalibrated 

score 
Original score 

Age [years] ≥55 -0.017 0 5 

Race [Boolean] Black 0.516 13 6 

Diabetic mother [Boolean] Yes 0.565 14 13 

Diabetic father [Boolean] Yes 0.319 8 8 

Hypertension [Boolean] Yes 0.046 11 11 

Ever smoker [Boolean] Yes 0.015 4 4 

Waist circumference [cm] 

Men: 90 to <95 

Women: 81 to <88 
0.036 9 10 

Men: 95 to <100 

Women: 88 to <96 
0.060 15 20 

Men: 100 to <106 

Women: 96 to <105 
1.198 30 26 

Men: ≥ 106 

Women: ≥105 
1.660 41 35 

Height [cm] 

Men: <171 

Women <157 
0.156 4 8 

Men: 171 to <175 

Women: 157 to <161 
-0.205 -5 6 

Men: 175 to <178 

Women: 161 to <164 
0.054 1 3 

Weight [kg] 
Men: ≥ 86.4 

Women: ≥ 72.7 
0.114 3 5 

Heart rate [beats/min] 
Men: ≥ 68 

Women: ≥ 70 
0.072 2 5 

Scale parameter - 3.945∙10-7 - - 

Shape parameter - 1.336 - - 

 

The performance of the recalibrated model and the recalibrated score in terms of discriminatory ability 
are summarized in Table 21 and compared to those of the original score. Results show that the 
recalibrated model and the recalibrated score achieved similar performance according to both the c-
index and the AU-ROC at 8 years. However, the original score outperformed the recalibrated model 
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and the recalibrated score both in the validation phase and on the test set. This may be caused by the 
counterintuitive effect of the height variable already observed in Table 20. The same result is visible in 
Figure 12, where the ROC curve at 8 years is displayed for the recalibrated model (red), the recalibrated 
score (green) and the original score (blue). 

 
Table 21. Performance of the Kahn’s score: AU-ROC and C-index for the recalibrated model, the 

recalibrated score and the original score assessed during the validation phase (mean ± SD over the 100 
bootstrap re-samplings) and on the test set. 

Model Metric Bootstrap validation Test set 

Recalibrated Weibull model 
AU-ROC at 8 years 0.729 (± 0.028) 0.799 

C-index 0.706 (± 0.023) 0.747 

Recalibrated score 
AU-ROC at 8 years 0.729 (± 0.028) 0.800 

C-index 0.705 (± 0.023) 0.747 

Original score 
AU-ROC at 8 years 0.755 (± 0.026) 0.815 

C-index 0.726 (± 0.022) 0.767 

 
Figure 12. ROC curve for the original Kahn’s score (blue), the recalibrated score (green) and the 

recalibrated model (red). The dashed line indicates random chance. 

As showed in Table 22 and Figure 13, the recalibrated model presented good calibration on the test 
set. Note that it was not possible to assess the calibration of the original model from which the Kahn’s 
score was derived because Kahn et al. did not report the coefficients of the Weibull model in their 
publication [12]. 

 

Table 22. Calibration of the Weibull proportional hazard model by Kahn et al. recalibrated on MESA data: 
E/O ratio and its 95% confidence interval. 

Model Metric Test set 

Recalibrated Weibull model E/O ratio [95% CI] 0.93 [0.69 – 1.26] 



H2020 - 727816 — PULSE June 2017 D5.3 Incorporation of New Variables into the Models 

 

  38/67 This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No GA727816. 

 

 
Figure 13. Calibration plot for the Kahn model recalibrated on MESA data. The dashed line represents 

perfect calibration. 

4.6 DPoRT 

4.6.1 The original model 
The Diabetes Population Risk Tool (DPoRT) is a population-based risk prediction tool developed by 
Rosella et al. [13] to predict T2D onset using national survey data. The DPoRT was derived using the 
data of the participants from Ontario of the 1996/7 National Population Health Survey conducted by 
Statistics Canada. Such data included the records of 9177 male and 10618 female subjects free of 
diabetes at baseline who could be individually linked to a registry of physician-diagnosed diabetes. The 
data were used to fit a Weibull accelerated failure time model separately for men and women. In 
particular, variable selection according to predictive significance was performed separately for men and 
women. The variables selected for inclusion in the model were: age, ethnicity, education, smoking, BMI, 
hypertension and heart disease for men; age, ethnicity, education, immigrant status, BMI and 
hypertension for women. Rosella et al. validated the DPoRT in a cohort of 9899 subjects with 9-year 
follow-up and a cohort of 26465 subjects with 5-year follow-up. 

4.6.2 Data selection and preprocessing 
Subjects for whom none of the DPoRT model variables was missing were selected from the initial 
dataset presented in Section 2.1. The selected sample comprised 5121 subjects, divided between a 
training and a test sets of 4096 and 1025 subjects, respectively. In particular, diabetes was developed 
during the follow-up by 508 subjects of the training and 127 subjects of the test set, thus a similar 
diabetes incidence was maintained between training and test sets. 

4.6.3 Model implementation and recalibration 

Variable preprocessing 

The variables required for the implementation of the DPoRT model were selected from the MESA 
variable list and treated as in the original work [13], with only the following deviations.  
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• Variable “heart disease” was not considered because having heart disease at exam 1 was an 
exclusion of MESA. 

• The BMI-age categories related to age <45 years were not considered because the age of all 
the MESA participants was ≥45 years at exam 1.  

Model recalibration on the training set 

Sex-specific Weibull accelerated failure time models were fitted on training set data using the 
diabetes events and the respective times as outcome, and the following variables as independent 
variables:  

• hypertension, non-white ethnicity, smoking, education, BMI-age, for the men; 
• hypertension, non-white ethnicity, immigrant status, education, BMI-age, for the women. 

4.6.4 Results 
As shown in Table 23 and in Table 24, the predictive variables used by the DPoRT models for men and 
women presented a similar distribution between the training and the test set. In particular, the outcome 
is observed in a similar percentage of training and test set subjects. 
Table 23. Distribution of DPoRT variables for the men in the training and test sets reported as percentage 

of subjects in different variable categories. 

Variable Value 
% Subjects training set 

(N=1,948) 
% Subjects test set 

(N=451) 

Hypertension [Boolean] Yes 32.8% 33.2% 

Non-white ethnicity [Boolean] Yes 58.8% 59.0% 

Current smoker [Boolean] Yes 19.5% 16.4% 

Education Post-secondary or 
higher 55.6% 54.3% 

BMI [kg/m2] 

BMI 23-24 14.2% 14.6% 

BMI 25-29 46.1% 49.0% 

BMI 30-34 23.6% 21.5% 

BMI ≥35 5.7% 7.31% 

Incidence of diabetes 
[Boolean] Yes 12.5% 13.3% 

 

Table 24. Distribution of DPoRT variables for the women in the training and test sets reported as 
percentage of subjects in different variable categories. 

Variable Value 
% Subjects training set 

(N=2,148) 
% Subject test set 

(N=574) 

Hypertension [Boolean] Yes 37.8% 35.5% 

Non-white ethnicity [Boolean] Yes 60.1% 63.6% 

Immigrant status [Boolean] Yes 31.4% 34.1% 

Education Post-secondary or 
higher 45.0% 44.6% 
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Variable Value 
% Subjects training set 

(N=2,148) 
% Subject test set 

(N=574) 

BMI [kg/m2], age [years] 

BMI 23-24, age <65 7.0% 6.3% 

BMI 25-29, age <65 21.0% 20.4% 

BMI 30-34, age <65 13.0% 12.9% 

BMI ≥35, age <65 10.6% 10.3% 

BMI <23, age ≥65 6.4% 4.2% 

BMI 23-24, age ≥65 5.4% 6.1% 

BMI 25-29, age ≥65 15.1% 14.5% 

BMI 30-34, age ≥65 7.4% 10.1% 

BMI ≥35, age ≥65 4.8% 4.4% 

Incidence of diabetes 
[Boolean] Yes 12.3% 11.7% 

 

The coefficients of the Weibull accelerated failure time models recalibrated on the whole training set 
are compared with those of the original DPoRT model in Table 25 for the men, in Table 26 for the 
women. Both for the men and the women, the effect of all the considered independent variables in the 
recalibrated model is in the same direction (same sign of the coefficient) as in the original model. 
However, for some variables, especially the BMI-age categories, the coefficients of the recalibrated 
model are significantly different from those of the original model, probably because of the different 
characteristics of the MESA population compared to the original DPoRT cohort (e.g., different age 
range).  

 
Table 25. Coefficients of the DPoRT model recalibrated in the training set for men (third column) compared 

to coefficients of the original model (fourth column). 

Variable Value Recalibrated model 
coefficient Original model coefficient 

Intercept - 10.5136 10.5971 

Hypertension [Boolean] Yes -0.3168 -0.2624 

Non-white ethnicity [Boolean] Yes -0.2471 -0.6316 

Heart disease [Boolean] Yes - -0.5355 

Current smoker [Boolean] Yes -0.2093 -0.1765 

Education Post-secondary or 
higher 0.1345 0.2344 

BMI [kg/m2], age [years] 

BMI 23-24, age <45 - -1.2378 

BMI 25-29, age <45 - -1.5490 

BMI 30-34, age <45 - -2.5437 

BMI ≥35, age <45 - -3.4717 

BMI <23, age ≥45 0 -1.9749 
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Variable Value Recalibrated model 
coefficient Original model coefficient 

BMI 23-24, age ≥45 0.0180 -2.4426 

BMI 25-29, age ≥45 -0.6986 -2.8588 

BMI 30-34, age ≥45 -1.0240 -3.3179 

 BMI ≥35, age ≥45 -1.4360 -3.5857 

Scale - 0.7539 0.8049 

 

Table 26. Coefficients of the DPoRT model recalibrated in the training set for women (third column) 
compared to coefficients of the original model (fourth column). 

Variable Value Recalibrated model 
coefficient 

Original model 
coefficient 

Intercept - 10.3016 10.5474 

Hypertension [Boolean] Yes -0.3761 -0.2865 

Non-white ethnicity [Boolean] Yes -0.3362 -0.4309 

Immigrant status [Boolean] Yes -0.3228 -0.2930 

Education Post-secondary or 
higher 0.1884 0.2042 

BMI [kg/m2], age [years] 

BMI 23-24, age <45 - -0.5432 

BMI 25-29, age <45 - -0.8453 

BMI 30-34, age <45 - -1.4104 

BMI ≥35, age <45 - -2.0483 

BMI <23, age 45-64 0 0.0711 

BMI 23-24, age 45-64 -0.0553 -0.7011 

BMI 25-29, age 45-64 -0.1041 -1.4167 

BMI 30-34, age 45-64 -0.5701 -2.2150 

BMI ≥35, age 45-64 -1.1534 -2.2695 

BMI <23, age ≥65 0.7372 -1.0823 

BMI 23-24, age ≥65 -0.2427 -1.1419 

BMI 25-29, age ≥65 -0.3415 -1.5999 

BMI 30-34, age ≥65 -0.4224 -1.9254 

BMI ≥35, age ≥65 -0.6676 -2.1959 

Scale - 0.7051 0.7814 

 

The performance of the recalibrated model and the original model in terms of discriminatory ability are 
quantitatively reported in Table 27 (C-index and AU-ROC at 8 years) and graphically represented in 
Figure 14 (ROC curve at 8 years). In particular, the recalibrated model outperforms the original model 
in the test set, as showed by the steeper ROC curve of the recalibrated model (red line in Figure 14) 
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compared to the original model (blue line in Figure 14), although in the bootstrap validation the two 
models present comparable average C-index and AU-ROC values.  

Table 27. Performance of discriminatory ability of the DPoRT model: AU-ROC and C-index for the 
recalibrated model and the original score assessed during the validation phase (mean ± SD over the 100 

bootstrap resamplings) and on the test set. 

Model Metric 
Men Women 

Bootstrap 
validation Test set Bootstrap 

validation Test set 

Recalibrated 
model 

C-index 
0.665 

(±0.023) 
0.707 

0.690 

(±0.023) 
0.706 

AU-ROC at 8 
years 

0.679 

(±0.028) 
0.735 

0.718 

(±0.027) 
0.756 

Original model 

C-index 
0.665 

(±0.023) 
0.697 

0.689 

(±0.024) 
0.687 

AU-ROC at 8 
years 

0.680 

(±0.027) 
0.728 

0.716 

(±0.027) 
0.728 

 

 
Figure 14. ROC curve at 8 years for the original DPoRT model (blue) and the recalibrated DPoRT 

model (red). The dashed line indicates random chance. 
 

As far as calibration is concerned, the E/O ratio values reported in Table 28 and the calibration plots of 
Figure 15 demonstrate that the original DPoRT model significantly overestimates the diabetes outcome 
8 year after the baseline. Conversely, the recalibrated model present better calibration, although it 
slightly underestimates the diabetes incidence for patient with high predicted event probability (see how 
the red curves in Figure 15 deviates from the dashed line as predicted event probability increases).  
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Table 28. Calibration of the DPoRT model: E/O ratio and its 95% confidence interval for the recalibrated 
and original models assessed on the test set. 

Model Metric Men Women 

Recalibrated 
model E/O ratio 

0.67  

[0.49 – 0.92] 

0.72 

[0.54 – 0.96] 

Original model E/O ratio 
5.93  

[4.33 – 8.12] 

2.87 

[2.16 – 3.81] 

 

 
Figure 15. Calibration plot at 8 years for the original DPoRT model and its recalibrated version (men in the 

left panel, women in the right panel). The dashed line represents perfect calibration. 

4.7 Discussion 
Eight literature models were assessed on the MESA dataset both in their original version and after 
recalibration on a suitable training set extracted from MESA. Such models can be divided into the 
following 2 categories.  

• Non-invasive models, i.e., models which do not require the collection of any invasive biomarker. 
The FINDRISC, the DPoRT, the ARIC simple model and the Kahn’s basic score belong to this 
category.  

• Invasive models, i.e., models which require variables deriving from laboratory tests, e.g., blood 
tests. The Stern’s model, the ARIC clinical models and the Framingham model belong to this 
category.  

Non-invasive models present a wider applicability than invasive models as they only use easily 
accessible information. Nevertheless, invasive models generally perform better than non-invasive 
models because they include some crucial predictors of diabetes, e.g. fasting plasma glucose. This 
was confirmed in our assessment: invasive models showed better performance than non-invasive 
models in terms of their ability to correctly rank subjects according to diabetes risk. The best 
performance was achieved by the Stern’s model (C-index equal to 0.86 on the test set) followed by the 
ARIC clinical model, which achieved very similar performance with and without using lipids 
concentration, and the Framingham model. Remarkably, all these models use as independent variable 
the fasting glucose concentration. Our analysis on the ARIC model evidenced that fasting glucose 
concentration has, not surprisingly, a remarkable predictive power; indeed, the addition of fasting 
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glucose concentration to the independent variables of the ARIC model increased the C-index value of 
the test set from 0.76 to 0.84 for the original model, from 0.79 to 0.85 for the recalibrated model. 
Regarding the non-invasive models, best performance was achieved by the Kahn’s score (C-index 
equal to 0.77 on the test set) followed by the ARIC simple model, the FINDRISC model and the DPoRT 
model. Note that while the Kahn’s score and the ARIC simple model required the measurement of heart 
rate or blood pressure, the FINDRISC and the DPoRT model use only self-reported information on 
medical history, biometric parameters and other general variables.  

Concerning the comparison between recalibrated vs. original models, the coefficients of the 
recalibrated models were consistent with those of the original models (same sign). However, in the 
recalibrated models the effect of age was smaller than in the original models (age coefficients of the 
recalibrated models close to 0), suggesting that in the MESA population age may have low predictive 
ability. This is probably due to the limited age range observed in MESA at exam 1, i.e. 45-84, thus 
young people who, in general, are at lower risk of developing T2D are not present in the MESA dataset. 
In terms of model performance, our analysis evidenced that recalibration significantly improves the 
accuracy of the models in predicting the observed diabetes incidence (E/O ratio closer to 1 for the 
recalibrated models compared to the original models). In particular, the models for which recalibration 
was most beneficial in terms of E/O ratio are the DPoRT model and the ARIC simple model. However, 
recalibration does not affect much the ability of the models to correctly rank the subjects according to 
diabetes risk, as C-index and AU-ROC values were comparable between the recalibrated and the 
original models for almost all the models. According to the c-index, the model for which recalibration 
was most beneficial is the ARIC simple model (C-index from 0.76 to 0.79), while for the FINDRISC, the 
Stern’s model and the Framingham model the recalibration did not change at all the C-index of the test 
set. 

5 IMPLEMENTATION, RECALIBRATION AND ASSESSMENT OF STATE-OF-
THE-ART MODELS OF ASTHMA ONSET 

5.1 Model by Thomsen et al. 

5.1.1 The original model 
In work by Thomsen et al. [14], a study to establish the risk factors for the development of asthma in 
young adults was performed using the longitudinal data collected in The Danish Twin Registry for birth 
cohorts over the period 1953-1982. In particular, the data of 19,349 subjects with no history of asthma 
in 1994 who answered to the follow-up questionnaire in 2002 were selected for the analysis. The age 
at baseline of selected subjects was 12-41 years. A logistic regression model was applied to investigate 
the association of possible risk factors at baseline with asthma onset at follow-up. The analysis was 
performed separately for subjects of age 12-19 years and 20-41 years. For subjects in the latter group, 
the model independent variables were gender, age, BMI, smoking and physical activity. Note that the 
aim of work by Thomsen et al. was to identify risk factors for asthma onset in young adults, not to 
develop a tool to predict asthma onset. Indeed, Thomsen et al. did not test the ability of the proposed 
logistic regression model to correctly predict future onset of asthma.  

5.1.2 Data selection and preprocessing 
A suitable data sample for the recalibration of the Thomsen’s model was selected from the initial dataset 
presented in Section 2.2. Since the Thomsen’s model is based on logistic regression, we selected the 
subjects having the outcome defined at a fixed cut-off time. After analysing the MESA data, we chose 
the cut-off of 10 years after the exam 1, which was considered as the baseline. This cut-off allowed us 
to have a good trade-off between the number of subjects discarded because developing asthma after 
the cut-off and the number of subjects discarded because censored before the cut-off. In addition, the 
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subjects for whom at least one of the Thomsen model variables was missing at the baseline were also 
discarded.  
The selected sample comprised 624 subjects, divided between a training and a test sets of 506 and 
127 subjects, respectively. Ten years after the baseline asthma was present in 104 subjects of the 
training set and 26 subjects of the test set, thus a similar asthma incidence was maintained between 
training and test sets. 

5.1.3 Model recalibration 

Variable preprocessing 

The variables required for the implementation of the Thomsen’s model were selected from the MESA 
variable list and treated as in the original work [14], with only the following deviations. 

• Variable “smoking” had 4 levels in the Thomsen’s original model, i.e. current daily, current 
occasional, former, never. Since the MESA data do not allow to distinguish between current 
daily and occasional smokers, for model recalibration only three levels were considered, i.e., 
current, former and never.  

• Physical activity was defined in hours/week in the Thomsen’s original model. In MESA, 
information on physical activity was collected by the MESA Typical Week Physical Activity 
Survey, which assesses the time spent in and frequency of various physical activities over the 
past month [15]. Metabolic equivalents (METs) were assigned to each physical activity, and 
the total MET-minutes per week of physical activity was determined for each participant for 
three intensity levels, i.e., light, moderate and vigorous. In our analysis, a variable representing 
the total MET-min of moderate and vigorous physical activity was used to describe physical 
activity. The tertiles of the distribution of this variable at the baseline exam were used to define 
the following three categories: less than 2,698 MET-min/week (low), between 2,698 and 6,165 
MET-min/week (medium), and more than 6,165 MET-min/week (high). 

Model recalibration on the training set 

The training set was used in the recalibration phase to fit a logistic regression model where the 
dependent variable was the onset of asthma in a 10-year follow-up window and the independent 
variables were age, gender, BMI, smoking and physical activity. 
The original model was impossible to implement on the MESA dataset because the intercept parameter 
was not reported in the paper by Thomsen et al. [14] and the “smoking” and “physical activity” variables 
presented a different definition or different categories in MESA compared to the dataset of Thomsen et 
al. [14]. 

5.1.4 Results 
As shown in Table 29, the predictive variables used by the model present a similar distribution between 
the training and the test set and, in particular, the outcome is observed in a similar percentage of 
subjects (20.6% vs. 20.5%).  
Table 29. Distribution of Thomsen model variables in the training and test sets reported as percentage of 

subjects in different variable categories for 0/1 variables, mean (SD) for continuous variables. 

Variable Value 
% Subjects training set 

(N=506) 
% Subjects test set 

(N=127) 

Gender Male 41.5% 38.6% 

Age [years] - 57.9 (9.1) 58.0 (9.1) 

BMI [kg/m2] - 27.87 (5.5) 27.9 (5.5) 

Smoking  Former 32.4% 31.5% 



H2020 - 727816 — PULSE June 2017 D5.3 Incorporation of New Variables into the Models 

 

  46/67 This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No GA727816. 

Variable Value 
% Subjects training set 

(N=506) 
% Subjects test set 

(N=127) 

Current 18.6% 14.2% 

Physical activity 
Medium 31.0% 38.6% 

High 31.6% 35.4% 

Incidence of asthma [Boolean] Yes 20.6% 20.5% 

 

The coefficients of the logistic regression model recalibrate on the training set are reported in Table 
30. We can observe that male gender and physical activity have a negative impact on the outcome, 
while age, BMI and smoking have a positive effect on the risk of asthma.  

The performance in terms of discriminatory ability is shown in Table 31 and Figure 16. Although the 
C-index and the AU-ROC are close to 0.7 on the test set, lower average performance are obtained in 
the bootstrap validation. Model calibration on the test set was good, with E/O ratio equal to 1 (Table 
32).  

Table 30. Coefficients of the Thomsen model recalibrated in the training set. 

Variable Value Recalibrated model 
coefficient 

Intercept - -5.399 

Gender Male -0.628 

Age [years] per year 0.054 

BMI [kg/m2] per unit 0.034 

Smoking  
Former 0.615 

Current 0.717 

Physical activity 
Medium -0.336 

High -0.481 

 

Table 31. Performance of discriminatory ability of the Thomsen model: AU-ROC and C-index for the 
recalibrated model during the validation phase (mean ± SD over the 100 bootstrap resamplings) and on the 

test set. 

Metric Validation Test set 

C-index 0.637 (±0.037) 0.688 

AU-ROC at 10 years 0.648 (±0.040) 0.690 
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Figure 16.  ROC curve at 10 years for the recalibrated Thomsen model (red). The dashed line indicates 

random chance. 

 
Table 32. Calibration of the Thomsen model: E/O ratio and its 95% confidence interval for the recalibrated 

model on the test set. 

Metric Test set 

E/O ratio 1.00 [0.68 – 1.46] 

5.2 Model by Verlato et al. 

5.2.1 The original model 
Verlato et al. investigated the association of smoking with new onset of asthma in adults, taking into 
account also other variables as confounding factors [16]. For this purpose, data collected in 3 population 
cohorts extracted from the Italian Study on Asthma in Young Adults and the Italian Study on the 
Incidence of Asthma were used. In particular, 5241 subjects without history of asthma at baseline were 
selected. Subjects participated in a follow-up survey on average 9 years after the baseline survey. On 
these data, a multivariate logistic regression model was fitted using asthma onset at follow-up as 
dependent variable, smoking habits, age, gender, occupation, asthma symptoms, chronic bronchitis, 
allergic rhinitis and cohort as independent variables. 
As for previous studies, the aim of work by Verlato et al. was to study risk factors associated with asthma 
onset, not to develop a tool to predict asthma onset. Therefore, the prediction ability of the multivariable 
logistic regression model was not tested by Verlato et al. 

5.2.2 Data selection and preprocessing 
A suitable data sample for the recalibration of the Verlato’s model was selected from the initial dataset 
presented in Section 2.2. Since the Verlato’s model requires some variables (e.g., chronic bronchitis, 
allergic rhinitis and asthma symptoms) that were collected only in MESA Lung, our analysis was 
restricted to the MESA Lung cohort. For each subject the baseline was defined as either exam 3 or 
exam 4 depending on when he or she entered MESA Lung. Then, since the Verlato’s model is based 
on logistic regression, we selected the subjects having the outcome defined at a fixed cut-off time. After 
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analysing the MESA Lung data, we chose the cut-off of 6 years after the baseline. This cut-off allowed 
us to have the better trade-off between the number of subjects discarded because developing asthma 
after the cut-off and the number of subjects discarded because censored before the cut-off. In addition, 
the subjects for whom at least one of the Verlato’s model variables was missing at the baseline were 
also discarded.  
The selected sample comprised 561 subjects. Because of the short duration of the follow-up, only 34 
subjects presented asthma at 6 years after the baseline. Given the small number of cases, we decided 
to assess the recalibrated model performance by performing the bootstrap validation on the entire 
dataset, without extracting the test set.  

5.2.3 Model recalibration 

Variable preprocessing 

The variables required for the implementation of the Verlato’s model were selected from the MESA 
variable list and treated as in the original work [16], with the following deviations. 

• Since some of the age categories of the Verlato’s model are not represented in MESA, we 
defined different categories for age. In particular, two classes were defined: <65 years and ≥65 
years. 

• We did not consider the variable “occupation” because we did not find a correspondence 
between the categories defined in Verlato’s model and those available in MESA 

• We did not consider the variable “cohort” because a single cohort is available in MESA 
• Allergic rhinitis was defined as the answer to question “Do you have any nasal allergies 

including hay fever?” in Verlato’s model, “Have you ever had hay fever (allergies involving the 
nose and/or eyes)?” in MESA.  

• In Verlato’s model asthma symptoms included wheezing, tightness in the chest or shortness of 
breath in the last 12 months. In MESA, participants were not asked for tightness in the chest, 
thus only wheezing and shortness of breath in the last 12 months were used to define the 
“asthma symptoms” variable.  

Model recalibration 

A logistic regression model where the dependent variable was the onset of asthma in a 6-year follow-
up window and the independent variables were age, gender, smoking, asthma symptoms, allergic 
rhinitis and chronic bronchitis was fitted on the entire selected dataset and on 100 sets extracted by 
bootstrap resampling.   
The original model was impossible to implement on the MESA dataset because the intercept parameter 
was not reported in the paper by Verlato et al. [16] and because of all the discrepancies in variable 
definition reported in the “Variable preprocessing” section. 

5.2.4 Results 
The model variable distribution in the sample selected for model recalibration is summarized in Table 
33. The coefficients of the logistic regression model recalibrated on the entire dataset are reported in 
Table 34. We can observe that male gender and allergic rhinitis have a negative impact on the outcome, 
while age, smoking, asthma symptoms and chronic bronchitis have a positive effect on the risk of 
asthma. The performance in terms of discriminatory ability are shown in Table 35. The C-index presents 
average value of 0.65 and a high standard deviation, which suggests the model performance are highly 
sensitive to the particular set of data used for model training. This was expected given the small number 
of subjects who develop asthma in this subset of data.  
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Table 33. Distribution of Verlato model variables in the training and test sets reported as percentage of 
subjects in different variable categories for 0/1 variables, mean (SD) for continuous variables. 

Variable Value 
% Subjects 

(N=561) 

Gender Male 49.4% 

Age [years] ≥65 52.4% 

Asthma symptoms [Boolean] Yes 23.5% 

Chronic bronchitis [Boolean] Yes 6.2% 

Allergic rhinitis [Boolean] Yes 31.0% 

Smoking  
Former 32.2% 

Current 7.3% 

Incidence of asthma [Boolean] Yes 4.8% 

 

Table 34. Coefficients of Verlato’s logistic regression model recalibrated on the data selected from the 
MESA dataset. 

Variable Value Model coefficient 

Intercept - -3.384 

Gender Male -0.746 

Age [years] ≥65 0.058 

Asthma symptoms [Boolean] Yes 1.320 

Chronic bronchitis [Boolean] Yes 1.147 

Allergic rhinitis [Boolean] Yes -0.594 

Smoking  
Former 0.127 

Current 0.510 

 
Table 35. Performance of discriminatory ability of the Verlato’s model: AU-ROC and C-index for the 

recalibrated model during the validation phase (mean ± SD over the 100 bootstrap resamplings) and on the 
test set. 

Metric Validation phase 

C-index 0.654 (±0.109) 

AU-ROC at 6 years 0.689 (±0.090) 
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5.3 Discussion 
We used the data collected in MESA to recalibrate two literature models of asthma adult-onset, both 
based on logistic regression. The Thomsen’s model uses only general information and variables related 
to subject lifestyle, such as smoking and physical activity, while the Verlato’s model includes variables 
more related to the respiratory health, such as asthma symptoms and chronic bronchitis. 
The performance of the two models were not satisfactory. In particular, the Thomsen’s model showed 
acceptable discriminatory ability on the test set (C-index close to 0.7), but lower performance in the 
bootstrap validation (slightly higher than a random predictor). The Verlato’s model presented highly 
variable discriminatory ability in the bootstrap validation.  
However, we would like to remark that important limitations of our analysis are the small size of the 
datasets used for model recalibration and, for the Verlato’s model, the short duration of the follow-up 
(having exam 3 or 4 as baseline it was not possible to observe a follow-up longer than 6 years), which 
did not allow to observe a sufficient number of cases.  

6 SELECTION OF NEW POTENTIALLY PREDICTIVE VARIABLES 
Several studies were published in the literature that investigate possible risk factors of T2D and asthma 
onset. Based on the evidences provided by the literature studies, we identified new variables potentially 
predictive of T2D and asthma onset, which were not used in the state-of-the-art models. These variables 
include medication use, psychological factors, habits and indicators of individual and neighbourhood 
socio-economic status. Then, the full set of candidate predictive variables for T2D and asthma onset 
was obtained merging the variables already considered by the state-of-the-art models and the new 
identified variables. As later described in Section 7, we studied the probabilistic relationships between 
the candidate predictive variables and the onset of T2D and asthma by static Bayesian networks. 
Provided that many of the candidate predictive variables, especially clinical variables, were not collected 
in the Health and Retirement Study, and this study was focused on a particular population, i.e. old 
subjects, we decided to use only the MESA dataset to study the predictive ability of the new variables. 
Therefore, the new candidate predictive variables of diabetes and asthma that we assessed in the 
Bayesian network models were selected from the MESA baseline survey (exam 1). Such variables are 
described in Section 6.1 and Section 6.2, respectively.  

6.1 Variables for diabetes model 
Several studies have shown that the socio-economic status of an individual can affect his or her health 
status. In particular, diabetes incidence was found associated with socio-economic factors, like 
occupation, education level, income and marital status [7][17]-[19]. In MESA the socio-economic status 
was assessed in the MESA Personal History questionnaire. In particular, the following socio-economic 
variables were selected as candidate predictors of diabetes: marital status, education level, occupation, 
family income, number of dependents sustained by the family income and ongoing financial strain.  
Recent studies have also indicated that the neighbourhood characteristics can affect health status, and 
in particular diabetes incidence, independent of the individual socio-economic status [20]. Indeed, 
neighbourhood environment can influence diet and physical activity through the availability of grocery 
stores, parks and other recreational facilities [21]. In addition, presence of noise, violence and poverty 
in the neighbourhood are sources of chronic stress that can affect the health status. In MESA, 
participants were surveyed about their neighbourhood characteristics by the MESA Neighbourhood 
questionnaire. In particular, the following neighbourhood variables were selected as candidate 
predictors of diabetes: lack of parks or playgrounds, lack of sidewalks, lack of access to adequate food 
shopping, heavy traffic, excessive noise, presence of trash, violence. 
Psychological factors may also play a role in the onset of chronic disease, such as diabetes. For 
example, a positive association between anxiety and depression and the onset of diabetes was 
demonstrated in the study by Engum [22]. The study by Schmitz et al. highlighted the interaction 
between depressive symptoms and metabolic dysregulation as a risk factor for T2D onset [23]. In 
another study performed on the MESA data, trait anger was found positively associated with future 
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development of T2D [24]. In MESA, the psychological status was assessed by the MESA Health and 
Life questionnaire. Based on the literature evidences, we selected the Spielberg Trait Anger Scale, the 
Spielberg Trait Anxiety Scale and the Center for Epidemiologic Studies Depression Scale as candidate 
risk factors for diabetes onset. We also selected the variable labelled as “chronic burden”, which 
assigned a score between 0 and 5 according to the ongoing experience of the following problems: 
serious personal health problem, serious health problem of a close person, difficulties with the job or 
the ability to work, difficulties in a relationship with a close person, financial strain. For the 
characterization of depression, we also extracted from the MESA dataset the variables related to the 
use of anti-depressants.  
In literature studies, the use of certain drugs was also find associated with diabetes. For instance, in 
study by Mikkelsen et al. the use of antibiotics was identified as a potential risk factor of T2D [25]. Other 
studies investigated the role of aspirin in stimulating insulin and glucagon secretion [26]. The MESA 
dataset includes a section on medication use. According to literature evidences, we selected the 
variables related to the use of antibiotics, aspirin and other anti-inflammatory medications. In addition, 
we selected the variables related to use of lipid lowering medication, since some state-of-the-art models 
include high lipids concentration as risk factors, and thyroid medications, because there is literature 
evidence suggesting thyroid disorders and diabetes affect each other [27].  
Another potential risk factor for diabetes onset is alcohol consumption. In particular, according to a 
recent review article, light-to-moderate alcohol consumption decreases the incidence of diabetes in the 
majority of the studies, whereas heavy drinkers and binge drinkers are at increased risk for diabetes 
[27]. In MESA, alcohol consumption was assessed in the MESA Personal History questionnaire; 
therefore, variables related to the alcohol consumption were selected from this questionnaire as 
candidate predictive variables. 
A summary of the new potentially predictive variables of T2D is reported in Table 36. 
 

Table 36. New potentially predictive variable of T2D extracted from the MESA dataset. 

Category Variables 

Socio-economic variables 
Marital status, education level, occupation, family income, 
number of dependents sustained by the family income, ongoing 
financial strain 

Neighbourhood characteristics 
Lack of parks or playgrounds, lack or sidewalks, lack of access 
to adequate food shopping, heavy traffic, excessive noise, 
presence of trash, violence 

Psychological factors Trait anxiety scale, trait anger scale, depression scale, chronic 
burden 

Medications Anti-depressants, antibiotics, aspirin, other anti-inflammatory 
medications, thyroid medications 

Habits Alcohol consumption 

6.2 Variables for asthma model 
Many literature studies demonstrated an association between personal socio-economic status and 
incidence of adult asthma [29]-[31]. As for diabetes, we therefore selected marital status, education 
level, occupation, family income, number of dependents sustained by the family income and ongoing 
financial strain from the MESA dataset, as socio-economic variables potentially predictive of asthma 
onset. 
Living neighbourhood characteristics were also selected as candidate risk factors for asthma. Indeed, 
neighbourhood characteristics may affect physical activity, diet and stress, which were all found 
associated with asthma onset or lung function deterioration in literature studies [32]-[34]. 
Some literature studies also suggested that psychological conditions, such as depression, anxiety and 
anger, can have a role in the onset and progression of asthma and other respiratory diseases [34][35]. 
According to these evidences, the Spielberg Trait Anger Scale, the Spielberg Trait Anxiety Scale, the 
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Center for Epidemiologic Studies Depression Scale and the chronic burden variable were selected from 
the MESA variable lists as candidate risk factors for asthma onset.  
Regarding the use of medications, a positive association between use of antibiotics and asthma onset 
in children was reported in the literature [36]. In a study by Thomsen et al. [37], the regular use of non-
steroidal anti-inflammatory drugs was demonstrated to increase the risk of asthma adult-onset. Use of 
aspirin was also shown to have a causal effect on asthma symptoms [38]. Based on these evidences, 
variables related to use of antibiotics, anti-inflammatory medications and aspirin were extracted from 
the MESA dataset as candidate predictors of asthma. 
Exposure to second hand smoke was identified as a predictor of asthma symptoms in many literature 
studies (e.g., [39]). In a study by Lajunen et al., exposure to second hand smoke and parental history 
of asthma were demonstrated to have a synergistic effect on the risk of asthma onset [40]. Then, both 
exposure to second hand smoke and family history of asthma were selected from the MESA dataset 
and included in the candidate predictive variable set.     
Concerning alcohol consumption, evidences reported for asthma are similar to those observed for 
diabetes: a moderate alcohol consumption seems associated with reduced risk of asthma onset, while 
heavy daily drinkers have an increased risk of asthma onset [41]. 
Finally, two variables related to respiratory problems while sleeping, i.e., use of two pillows to help 
breathing and waking breathless at night, were selected from the MESA variables collected at the 
baseline visit, because linked to commonly observed asthma symptoms.  
Note that other potential risk factors of asthma were assessed in the MESA Lung study, such as 
wheezing, chough and exposure to dust and fumes. However, we decided not to select those variables 
because, as shown when recalibrating the Verlato’s model (Section 5.2), only few subjects developed 
asthma in the MESA Lung cohort, thus any model relying on those data would be affected by high 
uncertainty.  
A summary of the new potentially predictive variables of asthma is reported in Table 37. 
 

Table 37. New potentially predictive variable of asthma extracted from the MESA dataset. 

Category Variables 

Socio-economic variables 
Marital status, education level, occupation, family income, 
number of dependents sustained by the family income, ongoing 
financial strain 

Neighbourhood characteristics 
Lack of parks or playgrounds, lack or sidewalks, lack of access 
to adequate food shopping, heavy traffic, excessive noise, 
presence of trash, violence 

Psychological factors Trait anxiety scale, trait anger scale, depression scale, chronic 
burden 

Medications Anti-depressants, antibiotics, aspirin, other anti-inflammatory 
medications  

Habits Alcohol consumption, exposure to second-hand smoke 

Symptoms Sleep with two pillows to help breathing, waking breathless at 
night 

 

7 STATIC BAYESIAN NETWORK MODELS 
Bayesian Networks (BNs) are descriptive models that encode the probabilistic relationships among 
variables; thus, BNs can be used to assess the most probable values of a specific variable, based on 
the values of some others. For instance, Bayesian Networks identify the combination of factors 
maximizing the probability of diabetes or asthma outcome. Thus, BN models provide a further level of 
information in addition to the models presented in Sections 4 and 5, which rank the subjects according 
to their risk of diabetes or asthma onset. 
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More in detail, a Bayesian Network [42][43] is a mathematical description of a joint probability 
distribution of a set of random variables based on a set of conditional independence assumptions. The 
structure of a Bayesian Network is a directed acyclic graph (DAG) such that each random variable 
corresponds to a node and the influence of one node (parent) on another (child) corresponds to a 
directed edge. The network structure induces a set of conditional probability distributions (CPDs), since 
each variable is a stochastic function of its parents. The network structure annotated with its CPDs, 
define a Bayesian Network (BN).  

BNs can thus detect probabilistic relationships among variables and the exploitation of prior knowledge 
in the learning process allows the BNs to deal even with variables with missing values. 
A two-step iterative procedure can be adopted to infer the BN on a training dataset: i) learning the graph 
topology (i.e., the parents-children dependencies among nodes) and ii) learning the parameters of each 
CPD (i.e., the probability that a variable assumes a specific value conditional to each possible joint 
assignment of values to its parents). The structure learning can be performed through three types of 
algorithms: score-based, constraint-based and hybrid. They all rely on a set of assumptions: the 
relationships between variables are conditional independencies, the observations are considered as 
independent and identically distributed samples of a population, and two different nodes cannot be a 
deterministic function of a single variable. The parameters learning is an estimation problem that is 
usually solved through techniques like Bayesian estimation or (regularized) maximum likelihood. 
In detail, the structure learning was performed using Hill-Climbing (HC) algorithm [44], a greedy search-
and-score method that starts with an initial graph (empty graph in our case) and searches the complete 
space of possible graph structures, by adding, reversing or deleting edges. The HC repeats as long as 
a specific score (Bayesian Information Criterion scoring was our choice) is maximized or a specific 
number of iterations has been recorded. Thus, the structure learning phase provided the topology of 
the BN with the highest probability to have generated the data. Subsequently, a Maximum a Posteriori 
estimation computed the set of parameters of the conditional probability distribution at each node. This 
procedure was implemented in R as a combination of a set of in-house script with bnstruct [45], an R 
package that makes use of state-of-the-art algorithms for network learning. 
To estimate a level of confidence on the probabilistic relations between variables, the BN analysis was 
iterated on a set of bootstrap samples of the original data and then the results were combined in an 
ensemble of BN. In detail, the resulting DAGs were converted into the corresponding partially directed 
acyclic graph (PDAG) representing the corresponding I-equivalent classes and aggregated in a 
Weighted Partially Directed Acyclic Graph (WPDAG). WPDAGs encode the confidence on the presence 
of each edge as the fraction of bootstrap samples with that edge. 

7.1 Diabetes BN model  

7.1.1 Data selection and preprocessing 
The diabetes BN model was developed using the data of subjects selected in Section 2.1. In particular, 
the variables used by the state-of-the-art models and the new variables selected in Section 6.1 were 
considered as candidate predictive variables of diabetes onset. First, continuous variables were 
discretized according either to their distribution percentiles or to thresholds adopted from the state-of-
the art diabetes models or clinical practice.  For instance, age was discretized in 3 levels based on its 
distribution: younger than 55, between 55 and 65, and older than 65. On the contrary, fasting glucose 
was discretized according to the thresholds given by the American Diabetes Association: lower than 
100 mg/dl, between 100 and 125 mg/dl, and higher than 125 mg/dl. Discrete variables with a strong 
imbalance in the number of subjects over its possible values were either filtered out or re-discretized 
(reducing number of levels), to avoid a strong imbalance in the number of parameters associated to 
specific variable with respect to other variables. For instance, the number of family members sustained 
by family income was originally associated to 6 levels and was re-discretized into 3 levels: one, two, 
more than two dependents. 
Furthermore, the dataset was subsampled in order to accommodate the outcome of BN model, which 
is the probability of developing diabetes within a specific lapse of time since the first exam. Thus, BN 
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required to be trained on both subjects with and without diabetes outcome at a specific time. To 
maximize the number of diabetic subjects considered and to balance as much as possible the number 
of diabetic and non-diabetic subjects, a 10-year horizon was chosen as model outcome. In detail, the 
dataset was reduced to 633 subjects that developed diabetes and 1,415 without diabetes outcome 
within 10 years since the first exam. Subjects that did not develop diabetes within this lapse of time 
were excluded because they could have developed diabetes before 10 years but this information was 
not available. At this point, a check was performed on the reduced dataset, in order to equally distribute 
the number of samples among the discretization levels of each variable. Some variables were thus 
removed, such as the one accounting for violence in the neighbourhood, while some other were 
aggregated, such as steroidal and non-steroidal anti-inflammatory medications considered as one 
variable.  
The dataset used for BN training comprised 2,048 subjects over 40 variables. The entire set of variables 
and their respective discretization levels are reported in Table 38. 
Table 38. Variables included in the dataset used for BN training, with description and discretization levels. 

Variable Description Levels/categories 

ethnicity ethnicity 
White, Caucasian 
Chinese American 
Black, African-American 
Hispanic 

gender gender female 
male 

Immigrant immigrant status no, born in the U.S. 
yes, born in another country 

marital_status marital status 
married/living as married 
widowed/divorced/separated 
never married 

education education 

grade 11 or less 
completed high school/ged, or some 
college but no degree 
technical school certificate, associate 
degree or bachelor's degree 
graduate or professional school 

nsidewalks_parks lack of sidewalks or parks in 
neighbourhood 

very serious/somewhat serious 
problem 
minor problem 
not really a problem 

nfshop lack of adequate food shopping in 
neighbourhood 

very serious/somewhat serious 
problem 
minor problem 
not really a problem 

ntraffic heavy traffic or speeding cars in 
neighbourhood 

very serious/somewhat serious 
problem 
minor problem 
not really a problem 

nnoise excessive noise in neighbourhood 
very serious/somewhat serious 
problem 
minor problem 
not really a problem 

fam_hx_diab family history of diabetes no 
yes 

hx_diab1 history of high blood sugar or diabetes no 
yes 
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Variable Description Levels/categories 

ever_aspirin_regularuse1 ever used aspirin regularly no 
yes 

age1 age [years] 
<55 
55-65 
>65 

bmi1 body mass index [kg/m^2] 
<25 
25 - 29.99 
>=30 

waist1 waist circumference [cm] 

<80 
from 80  to <88 
from 88 to <94 
from 94 to <102 
>=102 

smoking1 smoking status 
never 
former 
current 

alcohol_drinking1 alcohol drinking status 
never  
moderate  
frequent 

heart_rate1 heart rate [beats/min] 
<60 
60 -75 
>75 

systolic_bp1 systolic blood pressure [mmHg] 
<130 
130-139 
>=139 

diastolic_bp1 diastolic blood pressure [mmHg] 
<85 
85-89 
>89 

htn_med1 use of anti-hypertensive medication no 
yes 

ldl1 LDL cholesterol [mg/dl] 
<130 
130 -159 
>159 

hdl1 HDL cholesterol [mg/dl] 
<40 
40-59 
>59 

tot_chol1 Total cholesterol [mg/dl] 
<200 
200-239 
>239 

trig1 Triglycerides [mg/dl] 
<150 
150-199 
>199 

lipid_med1 Use of lipid-lowering medication no 
yes 

thyroid_med1 Use of thyroid medication no 
yes 

depression1 Use of antidepressants or depression 
symptoms according to depression scale 

no 
yes 
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Variable Description Levels/categories 

anti_inflammatory1 Use of anti-inflammatory meds (steroidal 
or non-steroidal including cox 2 inhibitors) 

<150 
150-199 
>199+D32:D43 

antibiotics1 Treated with antibiotics in the past year no 
yes 

curr_job1 Current occupation 
homemaker 
employed 
unemployed or retired 

income1 Total gross family income in the past 12 
months 

< $30,000 
$30,000-74,999 
>= $75,000 

num_dependents1 Number of family members sustained by 
family income (including the respondent) 

1 
2 
 >2 

fin_strain1 Ongoing financial strain no 
yes 

anger_scale1 Spielberg trait anger scale 
10-14 
15-21 
22-40 

anxiety_scale1 Spielberg trait anxiety scale 
0 -13 
14 -17 
18 - 40 

chronic_burden1 Chronic burden scale (indicator of chronic 
stress) 

0 
1 
2-5 

mod_vig_pa1 Moderate and vigorous physical activity 
[MET-min/week] 

0 - 2698 
2699 - 6165 
>6165 

gluc1 Fasting glucose [mg/dl] 
<100 
101-125 
>=126 

diab_10y Diagnosis of diabetes within 10 years 
since exam 1 

no 

yes 

7.1.2 Method for BN training 
BN training was performed through Hill-Climbing algorithm (structure learning) and a Maximum a 
Posteriori estimation (parameters learning); sense constraints was also applied to the network structure 
to codify the domain knowledge. For example, clinically or biologically non-sense relations among 
variables were forbidden, such as the dependence of ethnicity from the use of anti-inflammatory 
medications. To this purpose, variables were divided into four layers (Table 39) where variables in layer 
j could be dependent only on variables in layers i ≤ j. In particular, outcome variable (diabetes outcome 
at 10 years since the first exam) could be dependent on all the other variables of the datasets.  
  



H2020 - 727816 — PULSE June 2017 D5.3 Incorporation of New Variables into the Models 

 

  57/67 This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No GA727816. 

Table 39. Layering of variables in Bayesian Network 

Layer Variables 

1. Unpredictable 
variables 

Ethnicity, gender, immigrant ,marital_status ,education, nsidewalks_parks, nfshop, 
ntraffic, nnoise, fam_hx_diab, age1, curr_job1, income1, num_dependents1, 
fin_strain1 

2. Habits smoking1, alcohol_drinking1, mod_vig_pa1 

3. Phenotypic/Metabolic 
variables 

hx_diab1, ever_aspirin_regularuse1, bmi1, waist1, heart_rate1, systolic_bp1, 
diastolic_bp1, htn_med1, ldl1, hdl1, tot_chol1, trig1, lipid_med1, thyroid_med1, 
depression1, anti_inflammatory1, antibiotics1, anger_scale1, anxiety_scale1, 
chronic_burden1,gluc1 

4. Outcome diab_10y 

 
BN training was run first on the entire dataset, then 500 Bayesian Networks were inferred from 500 
bootstrap samples of the original dataset, in order to estimate a level of confidence on the edges among 
variables. The 500 BNs were merged into a WPDAG registering, for each pair of variables, the number 
of BNs with an edge between them; the presence of that edge among all the BNs encoded its 
confidence. 

7.1.3 Results 
The DAG resulting from the BN learning on the entire dataset comprised 40 nodes and 107 edges 
(Figure 17). The BN model identified some expected dependencies between variables, such as the 
influence of fasting glucose level and family history of diabetes on the probability of developing diabetes 
within 10 years. Besides, the model confirmed the relationship between diabetes and waist 
circumference, since it is known that being overweight or obese is a risk factor for T2D. Notably, the 
antibiotics were found to influence the probability of diabetes outcome as already reported in [25]. 



H2020 - 727816 — PULSE June 2017 D5.3 Incorporation of New Variables into the Models 

 

  58/67 This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No GA727816. 

 
Figure 17. Subset of the DAG obtained on the entire training dataset. Only nodes (34) with at least one 

direct edge are shown. Red: unpredictable variables (layer 1); green: habits (layer 2); cyan: 
phenotypic/metabolic variable (layer 3); purple: outcome (layer 4). 

 

Besides, Figure 18 reports the WPDAG resulting from the 500 BNs learnt on 500 bootstrap samples of 
the training dataset; the edge thickness is proportional to the confidence of that specific relation between 
variables. The model confirmed that diabetes is highly dependent on fasting glucose level and family 
history of diabetes, with these relations found in 100% and 83% of all the 500 DAGs, respectively. 
Furthermore, diabetes outcome was influenced by antibiotics, family income and BMI in 99%, 48% and 
25% of the DAGs, respectively. Education was the only node with edges in no more than 10% of DAGs, 
thus this variable should not be considered in further BN models. 



H2020 - 727816 — PULSE June 2017 D5.3 Incorporation of New Variables into the Models 

 

  59/67 This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No GA727816. 

 
Figure 18. Subset of the WPDAG obtained on the 500 bootstrap samples of the entire training dataset. 

Edge thickness is proportional to the number of times that edge is observed in the 500 DAGs.  Red: 
unpredictable variables (layer 1); green: habits (layer 2); cyan: phenotypic/metabolic variable (layer 3); 

purple: outcome (layer 4). 

7.2 Asthma BN model  

7.2.1 Data selection and preprocessing 
The BN model for asthma was developed using the data of subjects selected in Section 2.2. In 
particular, the variables used by the state-of-the-art variables and the new variables selected in Section 
6.2 were considered as candidate predictive variables of diabetes onset. First, continuous variables 
underwent a discretization process, based on thresholds either computed on their distribution 
percentiles or taken from the most recent literature or clinical practice. For instance, physical activity 
was discretized in 3 levels according to its distribution: less than 2,698 MET-min/week, between 2,698 
and 6,165 MET-min/week, and more than 6,165 MET-min/week. The number of levels of some discrete 
variables were reduced to homogenize the number of subjects over variable levels. 

Subsequently, the dataset was subsampled in order to accommodate the outcome of BN model, which 
is the probability of developing asthma within a specific lapse of time. Since BN training required 
subjects both with and without asthma at a specific time, a 11-year horizon was adopted as model 
outcome; consequently, the number of asthmatic subjects considered was maximized and the ratio 
asthmatic/non-asthmatic subjects was balanced. In detail, the dataset was reduced to 136 subjects that 
developed asthma and 163 without asthma outcome within 11 years since the first exam. Subjects that 
did not develop asthma within this lapse of time were excluded because they could have become 
asthmatic before 11 years but this information was not available. Consequently, for each variable, the 
number of subjects within the discretization levels was homogenized as much as possible. Some 
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variables were thus filtered out, such as the one accounting for trash problem in the neighbourhood, 
while some other were aggregated, such as steroidal and non-steroidal anti-inflammatory medications 
considered as one variable.  
The dataset used for BN training included 299 subjects over 32 variables. The entire set of variables 
and their respective discretization levels are reported in Table 40. 
Table 40. Variables included in the dataset used for BN training, with description and discretization levels. 

Variable Description Levels/categories 

ethnicity ethnicity 
White, Caucasian 
Chinese American 
Black, African-American 
Hispanic 

gender gender female 
male 

Immigrant immigrant status no, born in the U.S. 
yes, born in another country 

marital_status marital status 
married/living as married 
widowed/divorced/separated 
never married 

education education 

grade 11 or less 
completed high school/ged, or some 
college but no degree 
technical school certificate, associate 
degree or bachelor's degree 
graduate or professional school 

nsidewalks_parks lack of sidewalks or parks in 
neighbourhood 

very serious/somewhat serious 
problem 
minor problem 
not really a problem 

nfshop lack of adequate food shopping in 
neighbourhood 

very serious/somewhat serious 
problem 
minor problem 
not really a problem 

ntraffic heavy traffic or speeding cars in 
neighbourhood 

very serious/somewhat serious 
problem 
minor problem 
not really a problem 

nnoise excessive noise in neighbourhood 
very serious/somewhat serious 
problem 
minor problem 
not really a problem 

fam_hx_asthma family history of asthma no 
yes 

ever_aspirin_regularuse1 ever used aspirin regularly no 
yes 

age1 age [years] 
<55 
55-65 
>65 

bmi1 body mass index [kg/m^2] 
<25 
25 - 29.99 
>=30 

waist1 waist circumference [cm] <80 
from 80  to <88 
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Variable Description Levels/categories 

from 88 to <94 
from 94 to <102 
>=102 

smoking1 smoking status never 
yes (former or current) 

alcohol_drinking1 alcohol drinking status 
never  
moderate  
frequent 

heart_rate1 heart rate [beats/min] 
<60 
60 -75 
>75 

depression1 Use of antidepressants or depression 
symptoms according to depression scale 

no 
yes 

anti_inflammatory1 Use of anti-inflammatory meds (steroidal 
or non-steroidal including cox 2 inhibitors) 

<150 
150-199 
>199+D32:D43 

antibiotics1 Treated with antibiotics in the past year no 
yes 

curr_job1 Current occupation 
homemaker 
employed 
unemployed or retired 

income1 Total gross family income in the past 12 
months 

< $30,000 
$30,000-74,999 
>= $75,000 

num_dependents1 Number of family members sustained by 
family income (including the respondent) 

1 
2 
 >2 

fin_strain1 Ongoing financial strain no 
yes 

anger_scale1 Spielberg trait anger scale 
10-14 
15-21 
22-40 

anxiety_scale1 Spielberg trait anxiety scale 
0 -13 
14 -17 
18 - 40 

chronic_burden1 Chronic burden scale (indicator of chronic 
stress) 

0 
1 
2-5 

mod_vig_pa1 Moderate and vigorous physical activity 
[MET-min/week] 

0 - 2698 
2699 - 6165 
>6165 

sndh_smoke1 Second hand smoke [hours/week] no 
yes 

two_pillow1 
Sleep with two or more pillows to help 
breathe 

no 
yes 

wake_breath1 Awakened at night for trouble breathing 
no 
yes 
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Variable Description Levels/categories 

asthma_11y Diagnosis of diabetes within 11 years 
since exam 1 

no 
yes 

7.2.2 Method for BN training 
The Bayesian Network on asthma dataset was learnt through Hill-Climbing algorithm (structure 
learning) and a Maximum a Posteriori estimation (parameters learning); constraints was also applied to 
the network structure in order to forbid clinically or biologically non-sense relations among variables. 
For instance, the influence of antibiotics medication on gender was forbidden. Hence, variables were 
grouped into five layers (Table 41) where variables in layer j could be dependent only on variables in 
layers i ≤ j. In particular, outcome variable (asthma outcome at 11 years since the first exam) could be 
dependent on all the other variables of the datasets.  

Table 41. Layering of variables in Bayesian Network 

Layer Variables 

1. Unpredictable 
variables 

ethnicity, gender, immigrant ,marital_status ,education, nsidewalks_parks, nfshop, 
ntraffic, nnoise, fam_hx_asthma, age1, curr_job1, income1, num_dependents1, 
fin_strain1 

2. Habits smoking1, alcohol_drinking1, mod_vig_pa1, sndh_smoke 

3. 
Phenotypic/Metabolic 
variables 

ever_aspirin_regularuse1, bmi1, waist1, heart_rate1, depression1, anti_inflammatory1, 
antibiotics1, anger_scale1, anxiety_scale1, chronic_burden1 

4. Derived variables two_pillow1, wake_breath1 

5. Outcome asthma_11y 

 
First, BN was inferred from the entire dataset, secondly 500 Bayesian Networks were trained on 500 
bootstrap samples of the original dataset, in order to estimate a level of confidence on the edges among 
variables. The 500 BNs were aggregated into a WPDAG registering, for each pair of variables, the 
number of BNs with an edge between them; the presence of that edge among all the BNs encoded its 
confidence. 

7.2.3 Results 
The BN learning on the entire dataset resulted into a DAG with 32 nodes and 55 edges (Figure 19). 
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Figure 19. Subset of the DAG obtained on the entire training dataset. Only nodes (23) with at least one 

direct edge are shown. Red: unpredictable variables (layer 1); green: habits (layer 2); cyan: 
phenotypic/metabolic variable (layer 3); blue: derived variables (layer 4); purple: outcome (layer 5). 

 
The BN model revealed some new dependencies between variables that were not considered by the 
state-of-the-art models for asthma: the influence of second hand smoke, antibiotics and family history 
of asthma on the probability of developing asthma within 11 years.  
Besides, the WPDAG resulting from the 500 BNs learnt on 500 bootstrap samples of the training dataset 
is reported in Figure 20; the edge thickness is proportional to the number of times that edge is observed 
in the 500 DAGs. Our model confirmed that asthma is highly dependent on family history of asthma, 
second-hand smoke and antibiotics with these relations found in 100%, 99% and 91% of all the 500 
DAGs, respectively. Four variables showed edges in no more than 10% of DAGs: education, marital 
status, lack of food shopping and excessive noise in neighbourhood. These variables will probably not 
considered in further BN models, given their low influence over other variables. 
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Figure 20. Subset of the WPDAG obtained on the 500 bootstrap samples of the entire training dataset. 

Edge thickness is proportional to the number of times that edge is observed in the 500 DAGs. Red: 
unpredictable variables (layer 1); green: habits (layer 2); cyan: phenotypic/metabolic variable (layer 3); 

blue: derived variables (layer 4); purple: outcome (layer 5). 

8 INTEGRATION OF THE MODELS IN THE PULSE APP 
Many predictive models of diabetes onset were proposed in the literature based on simple logistic 
regression analysis, proportional hazard models or accelerated failure time models. The variables 
required by the state-of-the-art models were all included in the first version of PulsAir questionnaires, 
thus the state-of-the-art models of diabetes could be integrated in the PulsAir app as risk calculators to 
provide feedback to all the users. In addition, for the users having the Fitbit, the variables related to 
physical activity and heart rate can be derived from the Fitbit API with suitable measurement unit 
conversion. Specifically, as in MESA physical activity was measured in MET-min/week, which is an 
indicator of amount of energy expenditure per week, an equivalent information can be extracted from 
the Fitbit tracking of calories and minutes of activity per week.  
The assessment of state-of-the-art models for the prediction of diabetes onset (Section 4) showed that 
the recalibration on a different population does not impact significantly the discriminatory ability of the 
models. In other words, when the state-of-the-art models are applied to a new population their 
performance in correctly ranking the subjects according to diabetes risk is as good as the one of a 
model with equal structure, but whose parameters are estimated in the new population. As a 
consequence, the state-of-the-art models of diabetes can be used to assess the diabetes risk in the 
population enrolled in the PULSE pilots without a significant deterioration of their ranking ability. 
Nevertheless, our analysis showed that when the models are applied to a different population (e.g. in 
the MESA population in this deliverable) their performance in terms of calibration, i.e., the ability to 
correctly predict the observed probability of diabetes incidence, may not be satisfactory, unless a 
recalibration of the model is performed. Unfortunately, state-of-the-art models cannot be recalibrated 
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on the data collected in the PULSE pilots, because developing new models or recalibrating existing 
ones require longitudinal datasets in which a healthy population is followed up for several years (e.g. 
5-10 years) in order to observe a sufficient number of new cases of diabetes. To overcome this 
limitation, we are now validating a consensus model for application in PULSE that calculates the scores 
using different literature models, it interprets them as a relative risk rather than an absolute risk and, 
finally, it combines them in an aggregated risk score. In other words, the risk value returned by each 
model on a certain individual must be compared to the risk value of the other subjects in the pilot in 
order to really understand if the individual can be classified as “at risk” or not.  
Concerning the prediction of asthma onset, only few models were proposed in the literature to predict 
the adult-onset of asthma and none of those was validated. In this deliverable, we recalibrated two 
literature models and tested them on the MESA dataset (Section 5). However, the achieved 
performance was not satisfactory, although our results might be affected by the low incidence of asthma 
in the datasets used for model recalibration. For this reason, we are now developing new models 
including new variables (see below) to understand if new informative data might improve the model 
performances. In the meantime, we recommend 1) collecting data related to new variables and 2) 
designing a feedback strategy to provide the PULSE users with simple recommendations to address 
potential risk factors of asthma, which are known from literature studies.  

In this deliverable, we also identified new variables potentially predictive for diabetes and asthma onset 
based on the evidences published in the literature (Section 6). Some of them have been already 
included in the PulsAir questionnaires, e.g., depression symptoms, socio-economic indicators, 
neighbourhood characteristics and alcohol consumption. The probabilistic relationships between the 
candidate predictive variables and the onset of diabetes or asthma were assessed using static BNs 
(Section 7). Static BNs are good descriptive models that provide useful insight into the relationships 
between variables. Regarding asthma onset, in particular, the BN analysis evidenced that some of the 
new candidate variables have a direct effect on asthma adult-onset, e.g. exposure to second hand 
smoke and family history of asthma. Therefore, questions related to these variables were added in the 
last version of the PulsAir questionnaires. 
Next steps will include the development of new predictive models of diabetes and asthma onset using 
dynamic Bayesian networks and survival analysis (task 5.4). The new models will be integrated in the 
PulsAir app and/or the PULSE dashboard. The new models will incorporate both variables used by the 
state-of-the-art models and new variables identified in this deliverable. If needed, we will recommend 
further updates of the PULSE questionnaires based on our future analysis with the new models. 
Finally, as possible strategies to take advantage of the data collected by the PULSE system for the 
development of new health risk models, we consider that data collected within the PULSE project, 
especially the environmental data, would have a great value for modelling the risk of asthma attacks. 
Even if not originally present in WP5 tasks, the prediction of asthma attacks might be an outcome of 
high interest to study within the PULSE project. Therefore, the inclusion of a questionnaire to collect 
information related to asthma attacks in the PulsAir app would be of great value.    
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